from sympy.abc import x from sympy.core.numbers import (I, Rational) from sympy.core.singleton import S from sympy.functions.elementary.miscellaneous import sqrt from sympy.polys import Poly, cyclotomic_poly from sympy.polys.domains import FF, QQ from sympy.polys.matrices import DomainMatrix, DM from sympy.polys.matrices.exceptions import DMRankError from sympy.polys.numberfields.utilities import ( AlgIntPowers, coeff_search, extract_fundamental_discriminant, isolate, supplement_a_subspace, ) from sympy.printing.lambdarepr import IntervalPrinter from sympy.testing.pytest import raises def test_AlgIntPowers_01(): T = Poly(cyclotomic_poly(5)) zeta_pow = AlgIntPowers(T) raises(ValueError, lambda: zeta_pow[-1]) for e in range(10): a = e % 5 if a < 4: c = zeta_pow[e] assert c[a] == 1 and all(c[i] == 0 for i in range(4) if i != a) else: assert zeta_pow[e] == [-1] * 4 def test_AlgIntPowers_02(): T = Poly(x**3 + 2*x**2 + 3*x + 4) m = 7 theta_pow = AlgIntPowers(T, m) for e in range(10): computed = theta_pow[e] coeffs = (Poly(x)**e % T + Poly(x**3)).rep.rep[1:] expected = [c % m for c in reversed(coeffs)] assert computed == expected def test_coeff_search(): C = [] search = coeff_search(2, 1) for i, c in enumerate(search): C.append(c) if i == 12: break assert C == [[1, 1], [1, 0], [1, -1], [0, 1], [2, 2], [2, 1], [2, 0], [2, -1], [2, -2], [1, 2], [1, -2], [0, 2], [3, 3]] def test_extract_fundamental_discriminant(): # To extract, integer must be 0 or 1 mod 4. raises(ValueError, lambda: extract_fundamental_discriminant(2)) raises(ValueError, lambda: extract_fundamental_discriminant(3)) # Try many cases, of different forms: cases = ( (0, {}, {0: 1}), (1, {}, {}), (8, {2: 3}, {}), (-8, {2: 3, -1: 1}, {}), (12, {2: 2, 3: 1}, {}), (36, {}, {2: 1, 3: 1}), (45, {5: 1}, {3: 1}), (48, {2: 2, 3: 1}, {2: 1}), (1125, {5: 1}, {3: 1, 5: 1}), ) for a, D_expected, F_expected in cases: D, F = extract_fundamental_discriminant(a) assert D == D_expected assert F == F_expected def test_supplement_a_subspace_1(): M = DM([[1, 7, 0], [2, 3, 4]], QQ).transpose() # First supplement over QQ: B = supplement_a_subspace(M) assert B[:, :2] == M assert B[:, 2] == DomainMatrix.eye(3, QQ).to_dense()[:, 0] # Now supplement over FF(7): M = M.convert_to(FF(7)) B = supplement_a_subspace(M) assert B[:, :2] == M # When we work mod 7, first col of M goes to [1, 0, 0], # so the supplementary vector cannot equal this, as it did # when we worked over QQ. Instead, we get the second std basis vector: assert B[:, 2] == DomainMatrix.eye(3, FF(7)).to_dense()[:, 1] def test_supplement_a_subspace_2(): M = DM([[1, 0, 0], [2, 0, 0]], QQ).transpose() with raises(DMRankError): supplement_a_subspace(M) def test_IntervalPrinter(): ip = IntervalPrinter() assert ip.doprint(x**Rational(1, 3)) == "x**(mpi('1/3'))" assert ip.doprint(sqrt(x)) == "x**(mpi('1/2'))" def test_isolate(): assert isolate(1) == (1, 1) assert isolate(S.Half) == (S.Half, S.Half) assert isolate(sqrt(2)) == (1, 2) assert isolate(-sqrt(2)) == (-2, -1) assert isolate(sqrt(2), eps=Rational(1, 100)) == (Rational(24, 17), Rational(17, 12)) assert isolate(-sqrt(2), eps=Rational(1, 100)) == (Rational(-17, 12), Rational(-24, 17)) raises(NotImplementedError, lambda: isolate(I))