from sympy.core import symbols, Symbol, Tuple, oo, Dummy from sympy.tensor.indexed import IndexException from sympy.testing.pytest import raises from sympy.utilities.iterables import iterable # import test: from sympy.concrete.summations import Sum from sympy.core.function import Function, Subs, Derivative from sympy.core.relational import (StrictLessThan, GreaterThan, StrictGreaterThan, LessThan) from sympy.core.singleton import S from sympy.functions.elementary.exponential import exp, log from sympy.functions.elementary.trigonometric import cos, sin from sympy.functions.special.tensor_functions import KroneckerDelta from sympy.series.order import Order from sympy.sets.fancysets import Range from sympy.tensor.indexed import IndexedBase, Idx, Indexed def test_Idx_construction(): i, a, b = symbols('i a b', integer=True) assert Idx(i) != Idx(i, 1) assert Idx(i, a) == Idx(i, (0, a - 1)) assert Idx(i, oo) == Idx(i, (0, oo)) x = symbols('x', integer=False) raises(TypeError, lambda: Idx(x)) raises(TypeError, lambda: Idx(0.5)) raises(TypeError, lambda: Idx(i, x)) raises(TypeError, lambda: Idx(i, 0.5)) raises(TypeError, lambda: Idx(i, (x, 5))) raises(TypeError, lambda: Idx(i, (2, x))) raises(TypeError, lambda: Idx(i, (2, 3.5))) def test_Idx_properties(): i, a, b = symbols('i a b', integer=True) assert Idx(i).is_integer assert Idx(i).name == 'i' assert Idx(i + 2).name == 'i + 2' assert Idx('foo').name == 'foo' def test_Idx_bounds(): i, a, b = symbols('i a b', integer=True) assert Idx(i).lower is None assert Idx(i).upper is None assert Idx(i, a).lower == 0 assert Idx(i, a).upper == a - 1 assert Idx(i, 5).lower == 0 assert Idx(i, 5).upper == 4 assert Idx(i, oo).lower == 0 assert Idx(i, oo).upper is oo assert Idx(i, (a, b)).lower == a assert Idx(i, (a, b)).upper == b assert Idx(i, (1, 5)).lower == 1 assert Idx(i, (1, 5)).upper == 5 assert Idx(i, (-oo, oo)).lower is -oo assert Idx(i, (-oo, oo)).upper is oo def test_Idx_fixed_bounds(): i, a, b, x = symbols('i a b x', integer=True) assert Idx(x).lower is None assert Idx(x).upper is None assert Idx(x, a).lower == 0 assert Idx(x, a).upper == a - 1 assert Idx(x, 5).lower == 0 assert Idx(x, 5).upper == 4 assert Idx(x, oo).lower == 0 assert Idx(x, oo).upper is oo assert Idx(x, (a, b)).lower == a assert Idx(x, (a, b)).upper == b assert Idx(x, (1, 5)).lower == 1 assert Idx(x, (1, 5)).upper == 5 assert Idx(x, (-oo, oo)).lower is -oo assert Idx(x, (-oo, oo)).upper is oo def test_Idx_inequalities(): i14 = Idx("i14", (1, 4)) i79 = Idx("i79", (7, 9)) i46 = Idx("i46", (4, 6)) i35 = Idx("i35", (3, 5)) assert i14 <= 5 assert i14 < 5 assert not (i14 >= 5) assert not (i14 > 5) assert 5 >= i14 assert 5 > i14 assert not (5 <= i14) assert not (5 < i14) assert LessThan(i14, 5) assert StrictLessThan(i14, 5) assert not GreaterThan(i14, 5) assert not StrictGreaterThan(i14, 5) assert i14 <= 4 assert isinstance(i14 < 4, StrictLessThan) assert isinstance(i14 >= 4, GreaterThan) assert not (i14 > 4) assert isinstance(i14 <= 1, LessThan) assert not (i14 < 1) assert i14 >= 1 assert isinstance(i14 > 1, StrictGreaterThan) assert not (i14 <= 0) assert not (i14 < 0) assert i14 >= 0 assert i14 > 0 from sympy.abc import x assert isinstance(i14 < x, StrictLessThan) assert isinstance(i14 > x, StrictGreaterThan) assert isinstance(i14 <= x, LessThan) assert isinstance(i14 >= x, GreaterThan) assert i14 < i79 assert i14 <= i79 assert not (i14 > i79) assert not (i14 >= i79) assert i14 <= i46 assert isinstance(i14 < i46, StrictLessThan) assert isinstance(i14 >= i46, GreaterThan) assert not (i14 > i46) assert isinstance(i14 < i35, StrictLessThan) assert isinstance(i14 > i35, StrictGreaterThan) assert isinstance(i14 <= i35, LessThan) assert isinstance(i14 >= i35, GreaterThan) iNone1 = Idx("iNone1") iNone2 = Idx("iNone2") assert isinstance(iNone1 < iNone2, StrictLessThan) assert isinstance(iNone1 > iNone2, StrictGreaterThan) assert isinstance(iNone1 <= iNone2, LessThan) assert isinstance(iNone1 >= iNone2, GreaterThan) def test_Idx_inequalities_current_fails(): i14 = Idx("i14", (1, 4)) assert S(5) >= i14 assert S(5) > i14 assert not (S(5) <= i14) assert not (S(5) < i14) def test_Idx_func_args(): i, a, b = symbols('i a b', integer=True) ii = Idx(i) assert ii.func(*ii.args) == ii ii = Idx(i, a) assert ii.func(*ii.args) == ii ii = Idx(i, (a, b)) assert ii.func(*ii.args) == ii def test_Idx_subs(): i, a, b = symbols('i a b', integer=True) assert Idx(i, a).subs(a, b) == Idx(i, b) assert Idx(i, a).subs(i, b) == Idx(b, a) assert Idx(i).subs(i, 2) == Idx(2) assert Idx(i, a).subs(a, 2) == Idx(i, 2) assert Idx(i, (a, b)).subs(i, 2) == Idx(2, (a, b)) def test_IndexedBase_sugar(): i, j = symbols('i j', integer=True) a = symbols('a') A1 = Indexed(a, i, j) A2 = IndexedBase(a) assert A1 == A2[i, j] assert A1 == A2[(i, j)] assert A1 == A2[[i, j]] assert A1 == A2[Tuple(i, j)] assert all(a.is_Integer for a in A2[1, 0].args[1:]) def test_IndexedBase_subs(): i = symbols('i', integer=True) a, b = symbols('a b') A = IndexedBase(a) B = IndexedBase(b) assert A[i] == B[i].subs(b, a) C = {1: 2} assert C[1] == A[1].subs(A, C) def test_IndexedBase_shape(): i, j, m, n = symbols('i j m n', integer=True) a = IndexedBase('a', shape=(m, m)) b = IndexedBase('a', shape=(m, n)) assert b.shape == Tuple(m, n) assert a[i, j] != b[i, j] assert a[i, j] == b[i, j].subs(n, m) assert b.func(*b.args) == b assert b[i, j].func(*b[i, j].args) == b[i, j] raises(IndexException, lambda: b[i]) raises(IndexException, lambda: b[i, i, j]) F = IndexedBase("F", shape=m) assert F.shape == Tuple(m) assert F[i].subs(i, j) == F[j] raises(IndexException, lambda: F[i, j]) def test_IndexedBase_assumptions(): i = Symbol('i', integer=True) a = Symbol('a') A = IndexedBase(a, positive=True) for c in (A, A[i]): assert c.is_real assert c.is_complex assert not c.is_imaginary assert c.is_nonnegative assert c.is_nonzero assert c.is_commutative assert log(exp(c)) == c assert A != IndexedBase(a) assert A == IndexedBase(a, positive=True, real=True) assert A[i] != Indexed(a, i) def test_IndexedBase_assumptions_inheritance(): I = Symbol('I', integer=True) I_inherit = IndexedBase(I) I_explicit = IndexedBase('I', integer=True) assert I_inherit.is_integer assert I_explicit.is_integer assert I_inherit.label.is_integer assert I_explicit.label.is_integer assert I_inherit == I_explicit def test_issue_17652(): """Regression test issue #17652. IndexedBase.label should not upcast subclasses of Symbol """ class SubClass(Symbol): pass x = SubClass('X') assert type(x) == SubClass base = IndexedBase(x) assert type(x) == SubClass assert type(base.label) == SubClass def test_Indexed_constructor(): i, j = symbols('i j', integer=True) A = Indexed('A', i, j) assert A == Indexed(Symbol('A'), i, j) assert A == Indexed(IndexedBase('A'), i, j) raises(TypeError, lambda: Indexed(A, i, j)) raises(IndexException, lambda: Indexed("A")) assert A.free_symbols == {A, A.base.label, i, j} def test_Indexed_func_args(): i, j = symbols('i j', integer=True) a = symbols('a') A = Indexed(a, i, j) assert A == A.func(*A.args) def test_Indexed_subs(): i, j, k = symbols('i j k', integer=True) a, b = symbols('a b') A = IndexedBase(a) B = IndexedBase(b) assert A[i, j] == B[i, j].subs(b, a) assert A[i, j] == A[i, k].subs(k, j) def test_Indexed_properties(): i, j = symbols('i j', integer=True) A = Indexed('A', i, j) assert A.name == 'A[i, j]' assert A.rank == 2 assert A.indices == (i, j) assert A.base == IndexedBase('A') assert A.ranges == [None, None] raises(IndexException, lambda: A.shape) n, m = symbols('n m', integer=True) assert Indexed('A', Idx( i, m), Idx(j, n)).ranges == [Tuple(0, m - 1), Tuple(0, n - 1)] assert Indexed('A', Idx(i, m), Idx(j, n)).shape == Tuple(m, n) raises(IndexException, lambda: Indexed("A", Idx(i, m), Idx(j)).shape) def test_Indexed_shape_precedence(): i, j = symbols('i j', integer=True) o, p = symbols('o p', integer=True) n, m = symbols('n m', integer=True) a = IndexedBase('a', shape=(o, p)) assert a.shape == Tuple(o, p) assert Indexed( a, Idx(i, m), Idx(j, n)).ranges == [Tuple(0, m - 1), Tuple(0, n - 1)] assert Indexed(a, Idx(i, m), Idx(j, n)).shape == Tuple(o, p) assert Indexed( a, Idx(i, m), Idx(j)).ranges == [Tuple(0, m - 1), (None, None)] assert Indexed(a, Idx(i, m), Idx(j)).shape == Tuple(o, p) def test_complex_indices(): i, j = symbols('i j', integer=True) A = Indexed('A', i, i + j) assert A.rank == 2 assert A.indices == (i, i + j) def test_not_interable(): i, j = symbols('i j', integer=True) A = Indexed('A', i, i + j) assert not iterable(A) def test_Indexed_coeff(): N = Symbol('N', integer=True) len_y = N i = Idx('i', len_y-1) y = IndexedBase('y', shape=(len_y,)) a = (1/y[i+1]*y[i]).coeff(y[i]) b = (y[i]/y[i+1]).coeff(y[i]) assert a == b def test_differentiation(): from sympy.functions.special.tensor_functions import KroneckerDelta i, j, k, l = symbols('i j k l', cls=Idx) a = symbols('a') m, n = symbols("m, n", integer=True, finite=True) assert m.is_real h, L = symbols('h L', cls=IndexedBase) hi, hj = h[i], h[j] expr = hi assert expr.diff(hj) == KroneckerDelta(i, j) assert expr.diff(hi) == KroneckerDelta(i, i) expr = S(2) * hi assert expr.diff(hj) == S(2) * KroneckerDelta(i, j) assert expr.diff(hi) == S(2) * KroneckerDelta(i, i) assert expr.diff(a) is S.Zero assert Sum(expr, (i, -oo, oo)).diff(hj) == Sum(2*KroneckerDelta(i, j), (i, -oo, oo)) assert Sum(expr.diff(hj), (i, -oo, oo)) == Sum(2*KroneckerDelta(i, j), (i, -oo, oo)) assert Sum(expr, (i, -oo, oo)).diff(hj).doit() == 2 assert Sum(expr.diff(hi), (i, -oo, oo)).doit() == Sum(2, (i, -oo, oo)).doit() assert Sum(expr, (i, -oo, oo)).diff(hi).doit() is oo expr = a * hj * hj / S(2) assert expr.diff(hi) == a * h[j] * KroneckerDelta(i, j) assert expr.diff(a) == hj * hj / S(2) assert expr.diff(a, 2) is S.Zero assert Sum(expr, (i, -oo, oo)).diff(hi) == Sum(a*KroneckerDelta(i, j)*h[j], (i, -oo, oo)) assert Sum(expr.diff(hi), (i, -oo, oo)) == Sum(a*KroneckerDelta(i, j)*h[j], (i, -oo, oo)) assert Sum(expr, (i, -oo, oo)).diff(hi).doit() == a*h[j] assert Sum(expr, (j, -oo, oo)).diff(hi) == Sum(a*KroneckerDelta(i, j)*h[j], (j, -oo, oo)) assert Sum(expr.diff(hi), (j, -oo, oo)) == Sum(a*KroneckerDelta(i, j)*h[j], (j, -oo, oo)) assert Sum(expr, (j, -oo, oo)).diff(hi).doit() == a*h[i] expr = a * sin(hj * hj) assert expr.diff(hi) == 2*a*cos(hj * hj) * hj * KroneckerDelta(i, j) assert expr.diff(hj) == 2*a*cos(hj * hj) * hj expr = a * L[i, j] * h[j] assert expr.diff(hi) == a*L[i, j]*KroneckerDelta(i, j) assert expr.diff(hj) == a*L[i, j] assert expr.diff(L[i, j]) == a*h[j] assert expr.diff(L[k, l]) == a*KroneckerDelta(i, k)*KroneckerDelta(j, l)*h[j] assert expr.diff(L[i, l]) == a*KroneckerDelta(j, l)*h[j] assert Sum(expr, (j, -oo, oo)).diff(L[k, l]) == Sum(a * KroneckerDelta(i, k) * KroneckerDelta(j, l) * h[j], (j, -oo, oo)) assert Sum(expr, (j, -oo, oo)).diff(L[k, l]).doit() == a * KroneckerDelta(i, k) * h[l] assert h[m].diff(h[m]) == 1 assert h[m].diff(h[n]) == KroneckerDelta(m, n) assert Sum(a*h[m], (m, -oo, oo)).diff(h[n]) == Sum(a*KroneckerDelta(m, n), (m, -oo, oo)) assert Sum(a*h[m], (m, -oo, oo)).diff(h[n]).doit() == a assert Sum(a*h[m], (n, -oo, oo)).diff(h[n]) == Sum(a*KroneckerDelta(m, n), (n, -oo, oo)) assert Sum(a*h[m], (m, -oo, oo)).diff(h[m]).doit() == oo*a def test_indexed_series(): A = IndexedBase("A") i = symbols("i", integer=True) assert sin(A[i]).series(A[i]) == A[i] - A[i]**3/6 + A[i]**5/120 + Order(A[i]**6, A[i]) def test_indexed_is_constant(): A = IndexedBase("A") i, j, k = symbols("i,j,k") assert not A[i].is_constant() assert A[i].is_constant(j) assert not A[1+2*i, k].is_constant() assert not A[1+2*i, k].is_constant(i) assert A[1+2*i, k].is_constant(j) assert not A[1+2*i, k].is_constant(k) def test_issue_12533(): d = IndexedBase('d') assert IndexedBase(range(5)) == Range(0, 5, 1) assert d[0].subs(Symbol("d"), range(5)) == 0 assert d[0].subs(d, range(5)) == 0 assert d[1].subs(d, range(5)) == 1 assert Indexed(Range(5), 2) == 2 def test_issue_12780(): n = symbols("n") i = Idx("i", (0, n)) raises(TypeError, lambda: i.subs(n, 1.5)) def test_issue_18604(): m = symbols("m") assert Idx("i", m).name == 'i' assert Idx("i", m).lower == 0 assert Idx("i", m).upper == m - 1 m = symbols("m", real=False) raises(TypeError, lambda: Idx("i", m)) def test_Subs_with_Indexed(): A = IndexedBase("A") i, j, k = symbols("i,j,k") x, y, z = symbols("x,y,z") f = Function("f") assert Subs(A[i], A[i], A[j]).diff(A[j]) == 1 assert Subs(A[i], A[i], x).diff(A[i]) == 0 assert Subs(A[i], A[i], x).diff(A[j]) == 0 assert Subs(A[i], A[i], x).diff(x) == 1 assert Subs(A[i], A[i], x).diff(y) == 0 assert Subs(A[i], A[i], A[j]).diff(A[k]) == KroneckerDelta(j, k) assert Subs(x, x, A[i]).diff(A[j]) == KroneckerDelta(i, j) assert Subs(f(A[i]), A[i], x).diff(A[j]) == 0 assert Subs(f(A[i]), A[i], A[k]).diff(A[j]) == Derivative(f(A[k]), A[k])*KroneckerDelta(j, k) assert Subs(x, x, A[i]**2).diff(A[j]) == 2*KroneckerDelta(i, j)*A[i] assert Subs(A[i], A[i], A[j]**2).diff(A[k]) == 2*KroneckerDelta(j, k)*A[j] assert Subs(A[i]*x, x, A[i]).diff(A[i]) == 2*A[i] assert Subs(A[i]*x, x, A[i]).diff(A[j]) == 2*A[i]*KroneckerDelta(i, j) assert Subs(A[i]*x, x, A[j]).diff(A[i]) == A[j] + A[i]*KroneckerDelta(i, j) assert Subs(A[i]*x, x, A[j]).diff(A[j]) == A[i] + A[j]*KroneckerDelta(i, j) assert Subs(A[i]*x, x, A[i]).diff(A[k]) == 2*A[i]*KroneckerDelta(i, k) assert Subs(A[i]*x, x, A[j]).diff(A[k]) == KroneckerDelta(i, k)*A[j] + KroneckerDelta(j, k)*A[i] assert Subs(A[i]*x, A[i], x).diff(A[i]) == 0 assert Subs(A[i]*x, A[i], x).diff(A[j]) == 0 assert Subs(A[i]*x, A[j], x).diff(A[i]) == x assert Subs(A[i]*x, A[j], x).diff(A[j]) == x*KroneckerDelta(i, j) assert Subs(A[i]*x, A[i], x).diff(A[k]) == 0 assert Subs(A[i]*x, A[j], x).diff(A[k]) == x*KroneckerDelta(i, k) def test_complicated_derivative_with_Indexed(): x, y = symbols("x,y", cls=IndexedBase) sigma = symbols("sigma") i, j, k = symbols("i,j,k") m0,m1,m2,m3,m4,m5 = symbols("m0:6") f = Function("f") expr = f((x[i] - y[i])**2/sigma) _xi_1 = symbols("xi_1", cls=Dummy) assert expr.diff(x[m0]).dummy_eq( (x[i] - y[i])*KroneckerDelta(i, m0)*\ 2*Subs( Derivative(f(_xi_1), _xi_1), (_xi_1,), ((x[i] - y[i])**2/sigma,) )/sigma ) assert expr.diff(x[m0]).diff(x[m1]).dummy_eq( 2*KroneckerDelta(i, m0)*\ KroneckerDelta(i, m1)*Subs( Derivative(f(_xi_1), _xi_1), (_xi_1,), ((x[i] - y[i])**2/sigma,) )/sigma + \ 4*(x[i] - y[i])**2*KroneckerDelta(i, m0)*KroneckerDelta(i, m1)*\ Subs( Derivative(f(_xi_1), _xi_1, _xi_1), (_xi_1,), ((x[i] - y[i])**2/sigma,) )/sigma**2 )