from sympy.core.relational import Eq from sympy.core.singleton import S from sympy.abc import x, y, z, s, t from sympy.sets import FiniteSet, EmptySet from sympy.geometry import Point from sympy.vector import ImplicitRegion from sympy.testing.pytest import raises def test_ImplicitRegion(): ellipse = ImplicitRegion((x, y), (x**2/4 + y**2/16 - 1)) assert ellipse.equation == x**2/4 + y**2/16 - 1 assert ellipse.variables == (x, y) assert ellipse.degree == 2 r = ImplicitRegion((x, y, z), Eq(x**4 + y**2 - x*y, 6)) assert r.equation == x**4 + y**2 - x*y - 6 assert r.variables == (x, y, z) assert r.degree == 4 def test_regular_point(): r1 = ImplicitRegion((x,), x**2 - 16) assert r1.regular_point() == (-4,) c1 = ImplicitRegion((x, y), x**2 + y**2 - 4) assert c1.regular_point() == (0, -2) c2 = ImplicitRegion((x, y), (x - S(5)/2)**2 + y**2 - (S(1)/4)**2) assert c2.regular_point() == (S(5)/2, -S(1)/4) c3 = ImplicitRegion((x, y), (y - 5)**2 - 16*(x - 5)) assert c3.regular_point() == (5, 5) r2 = ImplicitRegion((x, y), x**2 - 4*x*y - 3*y**2 + 4*x + 8*y - 5) assert r2.regular_point() == (S(4)/7, S(9)/7) r3 = ImplicitRegion((x, y), x**2 - 2*x*y + 3*y**2 - 2*x - 5*y + 3/2) raises(ValueError, lambda: r3.regular_point()) def test_singular_points_and_multiplicty(): r1 = ImplicitRegion((x, y, z), Eq(x + y + z, 0)) assert r1.singular_points() == EmptySet r2 = ImplicitRegion((x, y, z), x*y*z + y**4 -x**2*z**2) assert r2.singular_points() == FiniteSet((0, 0, z), (x, 0, 0)) assert r2.multiplicity((0, 0, 0)) == 3 assert r2.multiplicity((0, 0, 6)) == 2 r3 = ImplicitRegion((x, y, z), z**2 - x**2 - y**2) assert r3.singular_points() == FiniteSet((0, 0, 0)) assert r3.multiplicity((0, 0, 0)) == 2 r4 = ImplicitRegion((x, y), x**2 + y**2 - 2*x) assert r4.singular_points() == EmptySet assert r4.multiplicity(Point(1, 3)) == 0 def test_rational_parametrization(): p = ImplicitRegion((x,), x - 2) assert p.rational_parametrization() == (x - 2,) line = ImplicitRegion((x, y), Eq(y, 3*x + 2)) assert line.rational_parametrization() == (x, 3*x + 2) circle1 = ImplicitRegion((x, y), (x-2)**2 + (y+3)**2 - 4) assert circle1.rational_parametrization(parameters=t) == (4*t/(t**2 + 1) + 2, 4*t**2/(t**2 + 1) - 5) circle2 = ImplicitRegion((x, y), (x - S.Half)**2 + y**2 - (S(1)/2)**2) assert circle2.rational_parametrization(parameters=t) == (t/(t**2 + 1) + S(1)/2, t**2/(t**2 + 1) - S(1)/2) circle3 = ImplicitRegion((x, y), Eq(x**2 + y**2, 2*x)) assert circle3.rational_parametrization(parameters=(t,)) == (2*t/(t**2 + 1) + 1, 2*t**2/(t**2 + 1) - 1) parabola = ImplicitRegion((x, y), (y - 3)**2 - 4*(x + 6)) assert parabola.rational_parametrization(t) == (-6 + 4/t**2, 3 + 4/t) rect_hyperbola = ImplicitRegion((x, y), x*y - 1) assert rect_hyperbola.rational_parametrization(t) == (-1 + (t + 1)/t, t) cubic_curve = ImplicitRegion((x, y), x**3 + x**2 - y**2) assert cubic_curve.rational_parametrization(parameters=(t)) == (t**2 - 1, t*(t**2 - 1)) cuspidal = ImplicitRegion((x, y), (x**3 - y**2)) assert cuspidal.rational_parametrization(t) == (t**2, t**3) I = ImplicitRegion((x, y), x**3 + x**2 - y**2) assert I.rational_parametrization(t) == (t**2 - 1, t*(t**2 - 1)) sphere = ImplicitRegion((x, y, z), Eq(x**2 + y**2 + z**2, 2*x)) assert sphere.rational_parametrization(parameters=(s, t)) == (2/(s**2 + t**2 + 1), 2*t/(s**2 + t**2 + 1), 2*s/(s**2 + t**2 + 1)) conic = ImplicitRegion((x, y), Eq(x**2 + 4*x*y + 3*y**2 + x - y + 10, 0)) assert conic.rational_parametrization(t) == ( S(17)/2 + 4/(3*t**2 + 4*t + 1), 4*t/(3*t**2 + 4*t + 1) - S(11)/2) r1 = ImplicitRegion((x, y), y**2 - x**3 + x) raises(NotImplementedError, lambda: r1.rational_parametrization()) r2 = ImplicitRegion((x, y), y**2 - x**3 - x**2 + 1) raises(NotImplementedError, lambda: r2.rational_parametrization())