# Copyright 2019 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Mesh summaries and TensorFlow operations to create them. This file is deprecated. See `summary_v2.py` instead. """ import json import tensorflow as tf from tensorboard.plugins.mesh import metadata from tensorboard.plugins.mesh import plugin_data_pb2 from tensorboard.plugins.mesh import summary_v2 # Export V2 versions. mesh = summary_v2.mesh mesh_pb = summary_v2.mesh_pb def _get_tensor_summary( name, display_name, description, tensor, content_type, components, json_config, collections, ): """Creates a tensor summary with summary metadata. Args: name: Uniquely identifiable name of the summary op. Could be replaced by combination of name and type to make it unique even outside of this summary. display_name: Will be used as the display name in TensorBoard. Defaults to `tag`. description: A longform readable description of the summary data. Markdown is supported. tensor: Tensor to display in summary. content_type: Type of content inside the Tensor. components: Bitmask representing present parts (vertices, colors, etc.) that belong to the summary. json_config: A string, JSON-serialized dictionary of ThreeJS classes configuration. collections: List of collections to add this summary to. Returns: Tensor summary with metadata. """ tensor = tf.convert_to_tensor(value=tensor) shape = tensor.shape.as_list() shape = [dim if dim is not None else -1 for dim in shape] tensor_metadata = metadata.create_summary_metadata( name, display_name, content_type, components, shape, description, json_config=json_config, ) tensor_summary = tf.compat.v1.summary.tensor_summary( metadata.get_instance_name(name, content_type), tensor, summary_metadata=tensor_metadata, collections=collections, ) return tensor_summary def _get_display_name(name, display_name): """Returns display_name from display_name and name.""" if display_name is None: return name return display_name def _get_json_config(config_dict): """Parses and returns JSON string from python dictionary.""" json_config = "{}" if config_dict is not None: json_config = json.dumps(config_dict, sort_keys=True) return json_config def op( name, vertices, faces=None, colors=None, display_name=None, description=None, collections=None, config_dict=None, ): """Creates a TensorFlow summary op for mesh rendering. DEPRECATED: see `summary_v2.py` instead. Args: name: A name for this summary operation. vertices: Tensor of shape `[dim_1, ..., dim_n, 3]` representing the 3D coordinates of vertices. faces: Tensor of shape `[dim_1, ..., dim_n, 3]` containing indices of vertices within each triangle. colors: Tensor of shape `[dim_1, ..., dim_n, 3]` containing colors for each vertex. display_name: If set, will be used as the display name in TensorBoard. Defaults to `name`. description: A longform readable description of the summary data. Markdown is supported. collections: Which TensorFlow graph collections to add the summary op to. Defaults to `['summaries']`. Can usually be ignored. config_dict: Dictionary with ThreeJS classes names and configuration. Returns: Merged summary for mesh/point cloud representation. """ display_name = _get_display_name(name, display_name) json_config = _get_json_config(config_dict) # All tensors representing a single mesh will be represented as separate # summaries internally. Those summaries will be regrouped on the client before # rendering. summaries = [] tensors = [ metadata.MeshTensor( vertices, plugin_data_pb2.MeshPluginData.VERTEX, tf.float32 ), metadata.MeshTensor( faces, plugin_data_pb2.MeshPluginData.FACE, tf.int32 ), metadata.MeshTensor( colors, plugin_data_pb2.MeshPluginData.COLOR, tf.uint8 ), ] tensors = [tensor for tensor in tensors if tensor.data is not None] components = metadata.get_components_bitmask( [tensor.content_type for tensor in tensors] ) for tensor in tensors: summaries.append( _get_tensor_summary( name, display_name, description, tensor.data, tensor.content_type, components, json_config, collections, ) ) all_summaries = tf.compat.v1.summary.merge( summaries, collections=collections, name=name ) return all_summaries def pb( name, vertices, faces=None, colors=None, display_name=None, description=None, config_dict=None, ): """Create a mesh summary to save in pb format. DEPRECATED: see `summary_v2.py` instead. Args: name: A name for this summary operation. vertices: numpy array of shape `[dim_1, ..., dim_n, 3]` representing the 3D coordinates of vertices. faces: numpy array of shape `[dim_1, ..., dim_n, 3]` containing indices of vertices within each triangle. colors: numpy array of shape `[dim_1, ..., dim_n, 3]` containing colors for each vertex. display_name: If set, will be used as the display name in TensorBoard. Defaults to `name`. description: A longform readable description of the summary data. Markdown is supported. config_dict: Dictionary with ThreeJS classes names and configuration. Returns: Instance of tf.Summary class. """ display_name = _get_display_name(name, display_name) json_config = _get_json_config(config_dict) summaries = [] tensors = [ metadata.MeshTensor( vertices, plugin_data_pb2.MeshPluginData.VERTEX, tf.float32 ), metadata.MeshTensor( faces, plugin_data_pb2.MeshPluginData.FACE, tf.int32 ), metadata.MeshTensor( colors, plugin_data_pb2.MeshPluginData.COLOR, tf.uint8 ), ] tensors = [tensor for tensor in tensors if tensor.data is not None] components = metadata.get_components_bitmask( [tensor.content_type for tensor in tensors] ) for tensor in tensors: shape = tensor.data.shape shape = [dim if dim is not None else -1 for dim in shape] tensor_proto = tf.compat.v1.make_tensor_proto( tensor.data, dtype=tensor.data_type ) summary_metadata = metadata.create_summary_metadata( name, display_name, tensor.content_type, components, shape, description, json_config=json_config, ) tag = metadata.get_instance_name(name, tensor.content_type) summaries.append((tag, summary_metadata, tensor_proto)) summary = tf.compat.v1.Summary() for tag, summary_metadata, tensor_proto in summaries: tf_summary_metadata = tf.compat.v1.SummaryMetadata.FromString( summary_metadata.SerializeToString() ) summary.value.add( tag=tag, metadata=tf_summary_metadata, tensor=tensor_proto ) return summary