# Copyright 2019 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Mesh summaries and TensorFlow operations to create them. V2 versions """ import json from tensorboard.compat import tf2 as tf from tensorboard.compat.proto import summary_pb2 from tensorboard.plugins.mesh import metadata from tensorboard.plugins.mesh import plugin_data_pb2 from tensorboard.util import tensor_util def _write_summary( name, description, tensor, content_type, components, json_config, step ): """Creates a tensor summary with summary metadata. Args: name: A name for this summary. The summary tag used for TensorBoard will be this name prefixed by any active name scopes. description: Optional long-form description for this summary, as a constant `str`. Markdown is supported. Defaults to empty. tensor: Tensor to display in summary. content_type: Type of content inside the Tensor. components: Bitmask representing present parts (vertices, colors, etc.) that belong to the summary. json_config: A string, JSON-serialized dictionary of ThreeJS classes configuration. step: Explicit `int64`-castable monotonic step value for this summary. If omitted, this defaults to `tf.summary.experimental.get_step()`, which must not be None. Returns: A boolean indicating if summary was saved successfully or not. """ tensor = tf.convert_to_tensor(value=tensor) shape = tensor.shape.as_list() shape = [dim if dim is not None else -1 for dim in shape] tensor_metadata = metadata.create_summary_metadata( name, None, # display_name content_type, components, shape, description, json_config=json_config, ) return tf.summary.write( tag=metadata.get_instance_name(name, content_type), tensor=tensor, step=step, metadata=tensor_metadata, ) def _get_json_config(config_dict): """Parses and returns JSON string from python dictionary.""" json_config = "{}" if config_dict is not None: json_config = json.dumps(config_dict, sort_keys=True) return json_config def mesh( name, vertices, faces=None, colors=None, config_dict=None, step=None, description=None, ): """Writes a TensorFlow mesh summary. Args: name: A name for this summary. The summary tag used for TensorBoard will be this name prefixed by any active name scopes. vertices: Tensor of shape `[dim_1, ..., dim_n, 3]` representing the 3D coordinates of vertices. faces: Tensor of shape `[dim_1, ..., dim_n, 3]` containing indices of vertices within each triangle. colors: Tensor of shape `[dim_1, ..., dim_n, 3]` containing colors for each vertex. config_dict: Dictionary with ThreeJS classes names and configuration. step: Explicit `int64`-castable monotonic step value for this summary. If omitted, this defaults to `tf.summary.experimental.get_step()`, which must not be None. description: Optional long-form description for this summary, as a constant `str`. Markdown is supported. Defaults to empty. Returns: True if all components of the mesh were saved successfully and False otherwise. """ json_config = _get_json_config(config_dict) # All tensors representing a single mesh will be represented as separate # summaries internally. Those summaries will be regrouped on the client before # rendering. tensors = [ metadata.MeshTensor( vertices, plugin_data_pb2.MeshPluginData.VERTEX, tf.float32 ), metadata.MeshTensor( faces, plugin_data_pb2.MeshPluginData.FACE, tf.int32 ), metadata.MeshTensor( colors, plugin_data_pb2.MeshPluginData.COLOR, tf.uint8 ), ] tensors = [tensor for tensor in tensors if tensor.data is not None] components = metadata.get_components_bitmask( [tensor.content_type for tensor in tensors] ) summary_scope = ( getattr(tf.summary.experimental, "summary_scope", None) or tf.summary.summary_scope ) all_success = True with summary_scope(name, "mesh_summary", values=tensors): for tensor in tensors: all_success = all_success and _write_summary( name, description, tensor.data, tensor.content_type, components, json_config, step, ) return all_success def mesh_pb( tag, vertices, faces=None, colors=None, config_dict=None, description=None ): """Create a mesh summary to save in pb format. Args: tag: String tag for the summary. vertices: numpy array of shape `[dim_1, ..., dim_n, 3]` representing the 3D coordinates of vertices. faces: numpy array of shape `[dim_1, ..., dim_n, 3]` containing indices of vertices within each triangle. colors: numpy array of shape `[dim_1, ..., dim_n, 3]` containing colors for each vertex. config_dict: Dictionary with ThreeJS classes names and configuration. description: Optional long-form description for this summary, as a constant `str`. Markdown is supported. Defaults to empty. Returns: Instance of tf.Summary class. """ json_config = _get_json_config(config_dict) summaries = [] tensors = [ metadata.MeshTensor( vertices, plugin_data_pb2.MeshPluginData.VERTEX, tf.float32 ), metadata.MeshTensor( faces, plugin_data_pb2.MeshPluginData.FACE, tf.int32 ), metadata.MeshTensor( colors, plugin_data_pb2.MeshPluginData.COLOR, tf.uint8 ), ] tensors = [tensor for tensor in tensors if tensor.data is not None] components = metadata.get_components_bitmask( [tensor.content_type for tensor in tensors] ) for tensor in tensors: shape = tensor.data.shape shape = [dim if dim is not None else -1 for dim in shape] tensor_proto = tensor_util.make_tensor_proto( tensor.data, dtype=tensor.data_type ) summary_metadata = metadata.create_summary_metadata( tag, None, # display_name tensor.content_type, components, shape, description, json_config=json_config, ) instance_tag = metadata.get_instance_name(tag, tensor.content_type) summaries.append((instance_tag, summary_metadata, tensor_proto)) summary = summary_pb2.Summary() for instance_tag, summary_metadata, tensor_proto in summaries: summary.value.add( tag=instance_tag, metadata=summary_metadata, tensor=tensor_proto ) return summary