# mypy: ignore-errors import contextlib import functools import logging from unittest.mock import patch import torch from torch._dynamo import disable from torch._dynamo.utils import counters, defake from torch._functorch.aot_autograd import aot_module_simplified from torch.utils._python_dispatch import _disable_current_modes log = logging.getLogger(__name__) def aot_autograd(**kwargs): def compiler_fn(gm: torch.fx.GraphModule, example_inputs): # Hack to get around circular import problems with aot_eager_decomp_partition if callable(kwargs.get("decompositions")): kwargs["decompositions"] = kwargs["decompositions"]() # NB: dont delete counter increment counters["aot_autograd"]["total"] += 1 use_fallback = False if use_fallback: log.debug("Unable to use AOT Autograd because graph has mutation") counters["aot_autograd"]["not_ok"] += 1 return gm # OK attempt to compile def _wrapped_bw_compiler(*args, **kwargs): # stop TorchDynamo from trying to compile our generated backwards pass return disable(disable(bw_compiler)(*args, **kwargs)) bw_compiler = kwargs.get("bw_compiler") or kwargs["fw_compiler"] kwargs["bw_compiler"] = _wrapped_bw_compiler kwargs["inference_compiler"] = ( kwargs.get("inference_compiler") or kwargs["fw_compiler"] ) from functorch.compile import nop from torch._inductor.debug import enable_aot_logging # debug asserts slow down compile time noticeably, # So only default them on when the aot_eager backend is used. if kwargs.get("fw_compiler", None) == nop: patch_config = patch("functorch.compile.config.debug_assert", True) else: patch_config = contextlib.nullcontext() try: # NB: NOT cloned! with enable_aot_logging(), patch_config: cg = aot_module_simplified(gm, example_inputs, **kwargs) counters["aot_autograd"]["ok"] += 1 return disable(cg) except Exception: counters["aot_autograd"]["not_ok"] += 1 raise return compiler_fn def mem_efficient_fusion_kwargs(use_decomps): from functorch.compile import ( default_decompositions, min_cut_rematerialization_partition, ts_compile, ) kwargs = { # these are taken from memory_efficient_fusion() "fw_compiler": ts_compile, "bw_compiler": ts_compile, "partition_fn": min_cut_rematerialization_partition, } if use_decomps: kwargs["decompositions"] = default_decompositions return kwargs def fake_tensor_unsupported(fn): """ Decorator for backends that need real inputs. We swap out fake tensors for zero tensors. """ @functools.wraps(fn) def wrapper(model, inputs, **kwargs): with _disable_current_modes(): inputs = list(map(defake, inputs)) return fn(model, inputs, **kwargs) return wrapper def device_from_inputs(example_inputs) -> torch.device: for x in example_inputs: if hasattr(x, "device"): return x.device def dtype_from_inputs(example_inputs) -> torch.dtype: for x in example_inputs: if hasattr(x, "dtype"): return x.dtype