import operator import torch import torch.nn as nn import torch.nn.functional as F toq = torch.ops.quantized import torch.ao.nn.quantized as nnq import torch.ao.nn.quantized.dynamic as nnqd import torch.ao.nn.intrinsic.quantized as nniq import torch.ao.nn.intrinsic.quantized.dynamic as nniqd import torch.ao.nn.intrinsic.qat as nniqat import torch.ao.nn.intrinsic as nni import torch.ao.nn.qat as nnqat import torch.ao.nn.qat.dynamic as nnqatd from torch.ao.quantization.backend_config import get_native_backend_config import torch.ao.quantization.fx._lower_to_native_backend as \ _lower_to_native_backend import torch.ao.quantization.quantization_mappings as quantization_mappings from .ns_types import NSNodeTargetType from typing import Callable, Dict, List, Optional, Set, Tuple def get_base_name_to_sets_of_related_ops() -> Dict[str, Set[NSNodeTargetType]]: # note: this set is modified below by items from backend_config sets_of_related_ops: List[Set[NSNodeTargetType]] = [ # conv modules { nn.Conv1d, }, { nn.Conv2d, }, { nn.Conv3d, }, # conv functionals { F.conv1d, }, { F.conv2d, }, { F.conv3d, }, # linear modules { nn.Linear, }, # linear functionals { F.linear, }, # average pool { nn.AvgPool1d, torch.avg_pool1d, }, { nn.AvgPool2d, torch._C._nn.avg_pool2d, }, { nn.AvgPool3d, torch._C._nn.avg_pool3d, }, # adaptive average pool { nn.AdaptiveAvgPool1d, F.adaptive_avg_pool1d, }, { nn.AdaptiveAvgPool2d, F.adaptive_avg_pool2d, }, { nn.AdaptiveAvgPool3d, F.adaptive_avg_pool3d, }, # LSTM { nn.LSTM, }, # add { torch.add, operator.add, # x + y }, # cat { torch.cat, }, # mul { torch.mul, operator.mul, }, # relu { F.relu, nn.ReLU, 'relu', 'relu_', torch.relu, }, # maxpool { nn.MaxPool1d, F.max_pool1d, }, { nn.MaxPool2d, F.max_pool2d, }, { nn.MaxPool3d, F.max_pool3d, }, # sigmoid { torch.sigmoid, 'sigmoid', 'sigmoid_', nn.Sigmoid, F.sigmoid, }, # BatchNorm { nn.BatchNorm2d, }, { nn.BatchNorm3d, }, # ConvTranspose { nn.ConvTranspose1d, }, { nn.ConvTranspose2d, }, { nn.ConvTranspose3d, }, # functional transposed conv { F.conv_transpose1d, }, { F.conv_transpose2d, }, { F.conv_transpose3d, }, # ELU { nn.ELU, }, # Embedding { nn.Embedding, }, # EmbeddingBag { nn.EmbeddingBag, }, # GroupNorm { nn.GroupNorm, }, # Hardswish { nn.Hardswish, }, # InstanceNorm { nn.InstanceNorm1d, }, { nn.InstanceNorm2d, }, { nn.InstanceNorm3d, }, # LayerNorm { nn.LayerNorm, }, # LeakyReLU { nn.LeakyReLU, }, # ReLU6 { nn.ReLU6, F.relu6, }, # F.elu { F.elu, }, # F.hardswish { F.hardswish, }, # F.group_norm { F.group_norm, }, # F.instance_norm { F.instance_norm, }, # F.layer_norm { F.layer_norm, }, # F.leaky_relu { F.leaky_relu, }, # F.silu { nn.SiLU, F.silu, }, # F.mish { nn.Mish, F.mish, }, # F.tanh { nn.Tanh, F.tanh, torch.tanh, 'tanh_', 'tanh', }, # F.hardsigmoid { 'hardsigmoid_', 'hardsigmoid', F.hardsigmoid, nn.Hardsigmoid, }, # F.hardtanh { nn.Hardtanh, F.hardtanh, F.hardtanh_, }, # floordiv { operator.floordiv, }, # unsqueeze { torch.unsqueeze, }, # stack { torch.stack, }, # squeeze { torch.squeeze, }, # sort { torch.sort, }, # repeat_interleave { torch.repeat_interleave, }, # min { torch.min, }, # mean { torch.mean, }, # max { torch.max, }, # transpose { torch.transpose, }, # flatten { torch.flatten, }, # clamp { torch.clamp, }, # chunk { torch.chunk, }, # interpolate { torch.nn.functional.interpolate, }, # dropout { nn.Dropout, }, # F.dropout { F.dropout, }, # matmul { torch.matmul, }, # Softmax { nn.Softmax, }, # PReLU { nn.PReLU, nnq.PReLU, }, # F.prelu { F.prelu, toq.prelu, }, # pixel shuffle { nn.PixelShuffle, }, { F.pixel_shuffle, }, # pixel unshuffle { nn.PixelUnshuffle, }, { F.pixel_unshuffle, }, # narrow { torch.narrow, }, ] # for each floating point op, add versions of the op added by # backend_config backend_config = get_native_backend_config() new_connections: List[Tuple[Callable, Callable]] = [ # technical debt edge case (nn.Linear, nn.modules.linear.NonDynamicallyQuantizableLinear), ] for pattern, config in backend_config._pattern_complex_format_to_config.items(): # pattern format: (c, (b, a)) first_element = pattern # look from the end, because pattern is in reverse order while isinstance(first_element, (list, tuple)): first_element = first_element[-1] if config.fused_module is not None: # case 1: pattern fuses a pattern of ops into an op # example: nn.Conv1d, nn.ReLU fused into nni.ConvReLU1d new_connections.append((first_element, config.fused_module)) if config.qat_module is not None: # case 2: pattern swaps a module into a QAT module # example: nni.ConvReLU1d swapped into nniqat.ConvReLU1d new_connections.append((first_element, config.qat_module)) if config.reference_quantized_module is not None: # case 3: reference version of floating point module, such as # nn.Conv2d and nnqr.Conv2d new_connections.append((first_element, config.reference_quantized_module)) # # Add reference module swaps from default lowering path # for source_to_target in ( _lower_to_native_backend.STATIC_LOWER_MODULE_MAP, _lower_to_native_backend.DYNAMIC_LOWER_MODULE_MAP, _lower_to_native_backend.WEIGHT_ONLY_LOWER_MODULE_MAP, _lower_to_native_backend.SPECIAL_PATTERN_LOWER_MODULE_MAP, ): for source, target in source_to_target.items(): # type: ignore[attr-defined] new_connections.append((source, target)) for source_to_double_target in ( _lower_to_native_backend.STATIC_LOWER_FUSED_MODULE_MAP, _lower_to_native_backend.STATIC_LOWER_FUSED_MODULE_TWO_INPUTS_MAP, _lower_to_native_backend.DYNAMIC_LOWER_FUSED_MODULE_MAP, ): for source, (target1, target2) in source_to_double_target.items(): # type: ignore[attr-defined] new_connections.append((source, target1)) new_connections.append((source, target2)) # # Add function swaps from default lowering path # for source, (target1, target2) in \ _lower_to_native_backend.STATIC_LOWER_FUNCTIONAL_MAP.items(): new_connections.append((source, target1)) new_connections.append((source, target2)) for source_to_target in ( _lower_to_native_backend.QBIN_OP_MAPPING, _lower_to_native_backend.QBIN_RELU_OP_MAPPING, quantization_mappings.DEFAULT_FLOAT_TO_QUANTIZED_OPERATOR_MAPPINGS, ): for source, target in source_to_target.items(): new_connections.append((source, target)) # # Add other swaps, ideally in the future this could be removed # after the lowering code stops using these. # for source_to_target in ( quantization_mappings.DEFAULT_DYNAMIC_QUANT_MODULE_MAPPINGS, ): for source, target in source_to_target.items(): new_connections.append((source, target)) # add the new connections from backend_config for item1, item2 in new_connections: for set_of_related_ops in sets_of_related_ops: if item1 in set_of_related_ops or item2 in set_of_related_ops: set_of_related_ops.add(item1) set_of_related_ops.add(item2) break base_name_to_sets_of_related_ops: Dict[str, Set[NSNodeTargetType]] = {} counter = 0 for set_of_related_ops in sets_of_related_ops: base_name = str(counter) counter += 1 base_name_to_sets_of_related_ops[base_name] = set_of_related_ops return base_name_to_sets_of_related_ops def get_base_name_for_op( base_name_to_sets_of_related_ops: Dict[str, Set[NSNodeTargetType]], op: NSNodeTargetType, ) -> Optional[str]: for base_name, set_of_related_ops in base_name_to_sets_of_related_ops.items(): if op in set_of_related_ops: return base_name return None def add_op_to_sets_of_related_ops( base_name_to_sets_of_related_ops: Dict[str, Set[NSNodeTargetType]], op: NSNodeTargetType, related_op: Optional[NSNodeTargetType], ) -> None: if related_op is not None: for set_of_related_ops in base_name_to_sets_of_related_ops.values(): if related_op in set_of_related_ops: set_of_related_ops.add(op) return # if we got here, related_op was not found raise AssertionError(f"{related_op} was not found") else: counter = 0 while str(counter) in base_name_to_sets_of_related_ops: counter += 1 base_name_to_sets_of_related_ops[str(counter)] = {op} # TODO(future PR): clean this up def get_node_type_to_io_type_map() -> Dict[str, Set[NSNodeTargetType]]: FUNS_IO_TYPE_FP32: Set[NSNodeTargetType] = { F.linear, F.conv1d, F.conv2d, F.conv3d, torch.cat, F.elu, F.hardswish, F.instance_norm, F.layer_norm, F.leaky_relu, F.dropout, F.silu, F.mish, operator.add, torch.add, operator.mul, torch.mul, torch.sum, F.prelu, } FUNS_IO_TYPE_FP16: Set[NSNodeTargetType] = set() FUNS_IO_TYPE_INT8: Set[NSNodeTargetType] = { toq.linear, toq.linear_relu, toq.conv1d, toq.conv1d_relu, toq.conv2d, toq.conv2d_relu, toq.conv3d, toq.conv3d_relu, toq.cat, toq.elu, toq.hardswish, toq.instance_norm, toq.layer_norm, toq.leaky_relu, toq.dropout, toq.prelu, # TODO(future PR): implement shadowing for binary ops and # uncomment below # toq.add, # toq.mul, } FUNS_IO_TYPE_FP32_OR_INT8: Set[NSNodeTargetType] = { F.relu, F.tanh, torch.tanh, F.sigmoid, torch.sigmoid, F.hardsigmoid, operator.floordiv, torch.adaptive_avg_pool1d, F.adaptive_avg_pool2d, F.adaptive_avg_pool3d, F.dropout, F.hardtanh, F.hardtanh_, F.interpolate, F.max_pool1d, F.max_pool2d, F.max_pool3d, F.relu6, F.pixel_shuffle, F.pixel_unshuffle, torch.avg_pool1d, torch._C._nn.avg_pool2d, torch._C._nn.avg_pool3d, torch.cat, torch.chunk, torch.clamp, torch.flatten, torch.transpose, torch.max, torch.mean, torch.min, torch.narrow, torch.repeat_interleave, torch.sort, torch.squeeze, torch.stack, torch.unsqueeze, operator.add, } MODS_IO_TYPE_FP32: Set[NSNodeTargetType] = { nn.Linear, nnqat.Linear, nnqatd.Linear, nnqd.Linear, torch.nn.modules.linear.NonDynamicallyQuantizableLinear, nn.Conv1d, nn.Conv2d, nn.Conv3d, nnqat.Conv1d, nnqat.Conv2d, nnqat.Conv3d, nnqat.Embedding, nnqat.EmbeddingBag, nn.LSTM, # note: nnqd.Linear is an instance of nnq.Linear, so this # check has to happen before the int8 module check nnqd.LSTM, nn.BatchNorm2d, nn.BatchNorm3d, nn.Dropout, nn.ConvTranspose1d, nn.ConvTranspose2d, nn.ConvTranspose3d, nn.ELU, nn.GroupNorm, nn.InstanceNorm1d, nn.InstanceNorm2d, nn.InstanceNorm3d, nn.LayerNorm, nn.Hardswish, nn.LeakyReLU, nn.ReLU6, nn.SiLU, nn.Mish, nn.Softmax, nn.PReLU, nni.BNReLU2d, nni.BNReLU3d, nni.ConvReLU1d, nni.ConvReLU2d, nni.ConvReLU3d, nni.LinearReLU, nni.LinearBn1d, nni.ConvBn1d, nni.ConvBn2d, nni.ConvBn3d, nniqat.ConvBn1d, nniqat.ConvBn2d, nniqat.ConvBn3d, nniqat.ConvBnReLU1d, nniqat.ConvBnReLU2d, nniqat.ConvBnReLU3d, nniqat.ConvReLU1d, nniqat.ConvReLU2d, nniqat.ConvReLU3d, nniqat.LinearReLU, nniqat.LinearBn1d, nniqd.LinearReLU, nni.LinearLeakyReLU, nni.LinearTanh, nni.ConvAdd2d, nni.ConvAddReLU2d, } MODS_IO_TYPE_INT8: Set[NSNodeTargetType] = { nnq.Linear, nnq.Conv1d, nnq.Conv2d, nnq.Conv3d, nnq.BatchNorm2d, nnq.BatchNorm3d, nnq.Dropout, nnq.ConvTranspose1d, nnq.ConvTranspose2d, nnq.ELU, nnq.InstanceNorm1d, nnq.InstanceNorm2d, nnq.InstanceNorm3d, nnq.LayerNorm, nnq.Hardswish, nnq.LeakyReLU, nnq.Embedding, nnq.EmbeddingBag, nnq.Dropout, nnq.Softmax, nnq.PReLU, nniq.BNReLU2d, nniq.BNReLU3d, nniq.ConvReLU1d, nniq.ConvReLU2d, nniq.ConvReLU3d, nniq.LinearReLU, nniq.LinearLeakyReLU, nniq.LinearTanh, nniq.ConvAdd2d, nniq.ConvAddReLU2d, } MODS_IO_TYPE_FP32_OR_INT8: Set[NSNodeTargetType] = { nn.ReLU, nn.Tanh, nn.Sigmoid, nn.Hardsigmoid, nn.AdaptiveAvgPool1d, nn.AdaptiveAvgPool2d, nn.AdaptiveAvgPool3d, nn.AvgPool1d, nn.AvgPool2d, nn.AvgPool3d, nn.Dropout, nn.Hardtanh, nn.Identity, nn.MaxPool1d, nn.MaxPool2d, nn.MaxPool3d, nn.PixelShuffle, nn.PixelUnshuffle, nn.ReLU6, } METHS_IO_TYPE_FP32_OR_INT8: Set[NSNodeTargetType] = { 'sigmoid_', 'sigmoid', 'tanh_', 'tanh', 'hardsigmoid_', 'hardsigmoid', 'relu_', 'relu', } return { 'funs_io_type_fp32': FUNS_IO_TYPE_FP32, 'funs_io_type_fp16': FUNS_IO_TYPE_FP16, 'funs_io_type_int8': FUNS_IO_TYPE_INT8, 'funs_io_type_fp32_or_int8': FUNS_IO_TYPE_FP32_OR_INT8, 'mods_io_type_fp32': MODS_IO_TYPE_FP32, 'mods_io_type_int8': MODS_IO_TYPE_INT8, 'mods_io_type_fp32_or_int8': MODS_IO_TYPE_FP32_OR_INT8, 'meths_io_type_fp32_or_int8': METHS_IO_TYPE_FP32_OR_INT8, } def get_unmatchable_types_map() -> Dict[str, Set[NSNodeTargetType]]: FUNS_UNMATCHABLE: Set[NSNodeTargetType] = { torch.quantize_per_tensor, operator.getitem, } MODS_UNMATCHABLE: Set[NSNodeTargetType] = { nn.Identity, } METHS_UNMATCHABLE: Set[NSNodeTargetType] = { 'to', 'dequantize', 'reshape', 'view', 'unsqueeze_', 'unsqueeze', 'transpose', 'squeeze_', 'squeeze', 'size', 'shape', 'resize_', 'repeat_interleave', 'repeat', 'permute', 'numel', 'mean', 'detach_', 'detach', 'contiguous', 'clamp', 'chunk', } return { 'funs_unmatchable': FUNS_UNMATCHABLE, 'mods_unmatchable': MODS_UNMATCHABLE, 'meths_unmatchable': METHS_UNMATCHABLE, }