import torch from torch.fx._symbolic_trace import Tracer from torch.fx.proxy import Scope from torch.ao.nn.intrinsic import _FusedModule from typing import List, Callable __all__ = [ "QuantizationTracer", ] class ScopeContextManager(torch.fx.proxy.ScopeContextManager): def __init__( self, scope: Scope, current_module: torch.nn.Module, current_module_path: str ): super().__init__(scope, Scope(current_module_path, type(current_module))) class QuantizationTracer(Tracer): def __init__( self, skipped_module_names: List[str], skipped_module_classes: List[Callable] ): super().__init__() self.skipped_module_names = skipped_module_names self.skipped_module_classes = skipped_module_classes # NB: initialized the module_type of top level module to None # we are assuming people won't configure the model with the type of top level # module here, since people can use "" for global config # We can change this if there is a use case that configures # qconfig using top level module type self.scope = Scope("", None) self.record_stack_traces = True def is_leaf_module(self, m: torch.nn.Module, module_qualified_name: str) -> bool: return ( ( (m.__module__.startswith("torch.nn") or m.__module__.startswith("torch.ao.nn")) and not isinstance(m, torch.nn.Sequential) ) or module_qualified_name in self.skipped_module_names or type(m) in self.skipped_module_classes or isinstance(m, _FusedModule) )