import torch from torch.fx import GraphModule from torch.fx import Node from .pt2e.prepare import prepare from .pt2e.qat_utils import ( _fuse_conv_bn_qat, _fold_conv_bn_qat, ) from .pt2e.utils import ( _get_node_name_to_scope, _fuse_conv_bn_, _disallow_eval_train, ) from .pt2e.representation import reference_representation_rewrite from .quantize_fx import _convert_to_reference_decomposed_fx from torch.ao.quantization.quantizer import ( # noqa: F401 Quantizer, QuantizationSpecBase, QuantizationSpec, FixedQParamsQuantizationSpec, SharedQuantizationSpec, DerivedQuantizationSpec, QuantizationAnnotation, ) from torch.fx.passes.infra.pass_manager import PassManager from torch.ao.quantization.pt2e.duplicate_dq_pass import DuplicateDQPass from torch.ao.quantization.pt2e.port_metadata_pass import PortNodeMetaForQDQ from torch._inductor.constant_folding import constant_fold __all__ = [ "prepare_pt2e", "prepare_qat_pt2e", "convert_pt2e", ] def prepare_pt2e( model: GraphModule, quantizer: Quantizer, ) -> GraphModule: """Prepare a model for post training quantization Args: * `model` (torch.fx.GraphModule): a model captured by `torch.export` API in the short term we are using `torch._export.capture_pre_autograd_graph`, in the long term we'll migrate to some `torch.export` API * `quantizer`: A backend specific quantizer that conveys how user want the model to be quantized. Tutorial for how to write a quantizer can be found here: https://pytorch.org/tutorials/prototype/pt2e_quantizer.html Return: A GraphModule with observer (based on quantizer annotation), ready for calibration Example:: import torch from torch.ao.quantization.quantize_pt2e import prepare_pt2e from torch._export import capture_pre_autograd_graph from torch.ao.quantization.quantizer import ( XNNPACKQuantizer, get_symmetric_quantization_config, ) class M(torch.nn.Module): def __init__(self): super().__init__() self.linear = torch.nn.Linear(5, 10) def forward(self, x): return self.linear(x) # initialize a floating point model float_model = M().eval() # define calibration function def calibrate(model, data_loader): model.eval() with torch.no_grad(): for image, target in data_loader: model(image) # Step 1. program capture # NOTE: this API will be updated to torch.export API in the future, but the captured # result shoud mostly stay the same m = capture_pre_autograd_graph(m, *example_inputs) # we get a model with aten ops # Step 2. quantization # backend developer will write their own Quantizer and expose methods to allow # users to express how they # want the model to be quantized quantizer = XNNPACKQuantizer().set_global(get_symmetric_quantization_config()) m = prepare_pt2e(m, quantizer) # run calibration # calibrate(m, sample_inference_data) """ torch._C._log_api_usage_once("quantization_api.quantize_pt2e.prepare_pt2e") original_graph_meta = model.meta node_name_to_scope = _get_node_name_to_scope(model) # TODO: check qconfig_mapping to make sure conv and bn are both configured # to be quantized before fusion # TODO: (maybe) rewrite this with subgraph_rewriter _fuse_conv_bn_(model) quantizer.transform_for_annotation(model) quantizer.annotate(model) quantizer.validate(model) model = prepare(model, node_name_to_scope, is_qat=False) model.meta.update(original_graph_meta) model = _disallow_eval_train(model) return model def prepare_qat_pt2e( model: GraphModule, quantizer: Quantizer, ) -> GraphModule: """Prepare a model for quantization aware training Args: * `model` (torch.fx.GraphModule): see :func:`~torch.ao.quantization.quantize_pt2e.prepare_pt2e` * `quantizer`: see :func:`~torch.ao.quantization.quantize_pt2e.prepare_pt2e` Return: A GraphModule with fake quant modules (based on quantizer annotation), ready for quantization aware training Example:: import torch from torch.ao.quantization.quantize_pt2e import prepare_qat_pt2e from torch._export import capture_pre_autograd_graph from torch.ao.quantization.quantizer import ( XNNPACKQuantizer, get_symmetric_quantization_config, ) class M(torch.nn.Module): def __init__(self): super().__init__() self.linear = torch.nn.Linear(5, 10) def forward(self, x): return self.linear(x) # initialize a floating point model float_model = M().eval() # define the training loop for quantization aware training def train_loop(model, train_data): model.train() for image, target in data_loader: ... # Step 1. program capture # NOTE: this API will be updated to torch.export API in the future, but the captured # result shoud mostly stay the same m = capture_pre_autograd_graph(m, *example_inputs) # we get a model with aten ops # Step 2. quantization # backend developer will write their own Quantizer and expose methods to allow # users to express how they # want the model to be quantized quantizer = XNNPACKQuantizer().set_global(get_symmetric_quantization_config()) m = prepare_qat_pt2e(m, quantizer) # run quantization aware training train_loop(prepared_model, train_loop) """ torch._C._log_api_usage_once("quantization_api.quantize_pt2e.prepare_qat_pt2e") original_graph_meta = model.meta node_name_to_scope = _get_node_name_to_scope(model) quantizer.transform_for_annotation(model) quantizer.annotate(model) quantizer.validate(model) # Perform fusion after annotate to avoid quantizing ops in the new # subgraph that don't need to be quantized # TODO: only fuse if conv and bn are both configured to be quantized _fuse_conv_bn_qat(model) model = prepare(model, node_name_to_scope, is_qat=True) model.meta.update(original_graph_meta) model = _disallow_eval_train(model) return model _QUANT_OPS = [ torch.ops.quantized_decomposed.quantize_per_tensor.default, torch.ops.quantized_decomposed.quantize_per_tensor.tensor, torch.ops.quantized_decomposed.quantize_per_channel.default, ] def _quant_node_constraint(n: Node) -> bool: """If there is any pure ops between get_attr and quantize op they will be const propagated e.g. get_attr(weight) -> transpose -> quantize -> dequantize* (Note: dequantize op is not going to be constant propagated) This filter is added because we don't want to constant fold the things that are not related to quantization """ return n.op == "call_function" and n.target in _QUANT_OPS def convert_pt2e( model: GraphModule, use_reference_representation: bool = False, fold_quantize: bool = True, ) -> GraphModule: """Convert a calibrated/trained model to a quantized model Args: * `model` (torch.fx.GraphModule): calibrated/trained model * `use_reference_representation` (bool): boolean flag to indicate whether to produce referece representation or not * `fold_quantize` (bool): boolean flag for whether fold the quantize op or not Returns: quantized model, either in q/dq representation or reference representation Example:: # prepared_model: the model produced by `prepare_pt2e`/`prepare_qat_pt2e` and calibration/training # `convert_pt2e` produces a quantized model that represents quantized computation with # quantize dequantize ops and fp32 ops by default. # Please refer to # https://pytorch.org/tutorials/prototype/pt2e_quant_ptq_static.html#convert-the-calibrated-model-to-a-quantized-model # for detailed explanation of output quantized model quantized_model = convert_pt2e(prepared_model) """ # flake8: noqa torch._C._log_api_usage_once("quantization_api.quantize_pt2e.convert_pt2e") if not isinstance(use_reference_representation, bool): raise ValueError( "Unexpected argument type for `use_reference_representation`, " f"please make sure you intend to pass argument {use_reference_representation} to convert_pt2e") original_graph_meta = model.meta model = _convert_to_reference_decomposed_fx(model) model = _fold_conv_bn_qat(model) pm = PassManager([DuplicateDQPass()]) model = pm(model).graph_module pm = PassManager([PortNodeMetaForQDQ()]) model = pm(model).graph_module if fold_quantize: constant_fold(model, _quant_node_constraint) if use_reference_representation: model = reference_representation_rewrite(model) model.meta.update(original_graph_meta) model = _disallow_eval_train(model) return model