from typing import Dict, List, Optional import torch import torch.optim._functional as F from torch import Tensor __all__: List[str] = [] # Define a TorchScript compatible Functional Adagrad Optimizer # where we use these optimizer in a functional way. # Instead of using the `param.grad` when updating parameters, # we explicitly let the user pass gradients to the `step` function # this is so that we could separate the gradients and parameters # and allow multithreaded trainer to update the parameters # without data traces on accumulating to the same .grad. # NOTE: This should be only used by distributed optimizer internals # and not meant to expose to the user. @torch.jit.script class _FunctionalAdagrad: def __init__( self, params: List[Tensor], lr: float = 1e-2, lr_decay: float = 0.0, weight_decay: float = 0.0, initial_accumulator_value: float = 0.0, warmup_lr_multiplier: float = 1.0, warmup_num_iters: float = 0.0, eps: float = 1e-10, coalesce_grad: bool = True, foreach: bool = False, maximize: bool = False, _allow_empty_param_list: bool = False, ): self.defaults = { "lr": lr, "lr_decay": lr_decay, "eps": eps, "weight_decay": weight_decay, "initial_accumulator_value": initial_accumulator_value, "warmup_lr_multiplier": warmup_lr_multiplier, "warmup_num_iters": warmup_num_iters, } self.coalesce_grad = coalesce_grad self.foreach = foreach self.maximize = maximize self.state = torch.jit.annotate(Dict[torch.Tensor, Dict[str, torch.Tensor]], {}) if len(params) == 0 and not _allow_empty_param_list: raise ValueError("optimizer got an empty parameter list") # NOTE: we only have one param_group and don't allow user to add additional # param group as it's not a common use case. self.param_group = {"params": params} # TODO: no union or any types in TorchScript, make step a scalar tensor instead # This is also needed by if we want to share_memory on the step across processes for p in self.param_group["params"]: self.state[p] = { "sum": torch.full_like(p.data, initial_accumulator_value), "step": torch.tensor(0.0), } def step(self, gradients: List[Optional[Tensor]]): params = self.param_group["params"] params_with_grad = [] grads = [] state_sums = [] state_steps: List[Tensor] = [] if len(params) != len(gradients): raise ValueError( "the gradients passed in does not equal to the size of the parameters!" + f"Params length: {len(params)}. " + f"Gradients length: {len(gradients)}" ) has_sparse_grad, has_complex = False, False for param, gradient in zip(self.param_group["params"], gradients): if gradient is not None: has_sparse_grad |= gradient.is_sparse has_complex |= torch.is_complex(param) params_with_grad.append(param) grads.append(gradient) state = self.state[param] state_sums.append(state["sum"]) state_steps.append(state["step"]) with torch.no_grad(): F.adagrad( params, grads, state_sums, state_steps, lr=self.defaults["lr"], weight_decay=self.defaults["weight_decay"], lr_decay=self.defaults["lr_decay"], eps=self.defaults["eps"], has_sparse_grad=has_sparse_grad, foreach=self.foreach, maximize=self.maximize, has_complex=has_complex, )