from typing import Dict, List, Optional import torch import torch.optim._functional as F from torch import Tensor __all__: List[str] = [] # Define a TorchScript compatible Functional RMSprop Optimizer # where we use these optimizer in a functional way. # Instead of using the `param.grad` when updating parameters, # we explicitly allow the distributed optimizer pass gradients to # the `step` function. In this way, we could separate the gradients # and parameters and allow multithreaded trainer to update the # parameters without data traces on accumulating to the same .grad. # NOTE: This should be only used by distributed optimizer internals # and not meant to expose to the user. @torch.jit.script class _FunctionalRMSprop: def __init__( self, params: List[Tensor], lr: float = 1e-2, alpha: float = 0.99, eps: float = 1e-8, weight_decay: float = 0.0, momentum: float = 0.0, centered: bool = False, foreach: bool = False, maximize: bool = False, _allow_empty_param_list: bool = False, ): self.defaults = { "lr": lr, "alpha": alpha, "eps": eps, "weight_decay": weight_decay, "momentum": momentum, } self.centered = centered self.foreach = foreach self.maximize = maximize if len(params) == 0 and not _allow_empty_param_list: raise ValueError("optimizer got an empty parameter list") # NOTE: we only have one param_group and don't allow user to add additional # param group as it's not a common use case. self.param_group = {"params": params} self.state = torch.jit.annotate(Dict[torch.Tensor, Dict[str, torch.Tensor]], {}) def step(self, gradients: List[Optional[Tensor]]): params = self.param_group["params"] params_with_grad = [] grads = [] square_avgs = [] grad_avgs = [] momentum_buffer_list = [] lr = self.defaults["lr"] alpha = self.defaults["alpha"] eps = self.defaults["eps"] momentum = self.defaults["momentum"] weight_decay = self.defaults["weight_decay"] if len(params) != len(gradients): raise ValueError( "the gradients passed in does not equal to the size of the parameters!" + f"Params length: {len(params)}. " + f"Gradients length: {len(gradients)}" ) has_complex = False for param, gradient in zip(params, gradients): if gradient is not None: has_complex |= torch.is_complex(param) params_with_grad.append(param) grads.append(gradient) # Lazy state initialization if param not in self.state: self.state[param] = {} state = self.state[param] state["step"] = torch.tensor(0.0) state["square_avg"] = torch.zeros_like( param, memory_format=torch.preserve_format ) if momentum > 0: state["momentum_buffer"] = torch.zeros_like( param, memory_format=torch.preserve_format ) if self.centered: state["grad_avg"] = torch.zeros_like( param, memory_format=torch.preserve_format ) state = self.state[param] square_avgs.append(state["square_avg"]) if momentum > 0: momentum_buffer_list.append(state["momentum_buffer"]) if self.centered: grad_avgs.append(state["grad_avg"]) state["step"] += 1 with torch.no_grad(): F.rmsprop( params_with_grad, grads, square_avgs, grad_avgs, momentum_buffer_list, lr=lr, alpha=alpha, eps=eps, weight_decay=weight_decay, momentum=momentum, centered=self.centered, foreach=self.foreach, maximize=self.maximize, has_complex=has_complex, )