from torch.fx.graph_module import GraphModule from typing import Any, Callable, Dict, List, Tuple, Type import torch import torch.nn as nn from torch.fx._compatibility import compatibility __all__ = ['default_matching', 'extract_attrs_for_lowering', 'lift_lowering_attrs_to_nodes'] # Matching method matches the attribute name of current version to the attribute name of `target_version` @compatibility(is_backward_compatible=False) def default_matching(name: str, target_version: int) -> str: """Default matching method """ return name # This dict maps the nn.Module class name to the attribute name list that we want to fetch for lowering. # The first integer in the tuple is the version number of the nn.Module class when we create the parameter list. # If there's a version mismatch then it means the parameter names in the book might be mismatched with nn.Module. module_fetch_book: Dict[Type, Tuple[int, List[str], Callable[[str, int], str]]] = { torch.nn.modules.linear.Linear: (1, ["weight", "bias"], default_matching), torch.nn.modules.conv.Conv2d: ( 1, ["weight", "bias", "kernel_size", "stride", "padding", "dilation", "groups", "padding_mode"], default_matching ), torch.nn.modules.batchnorm.BatchNorm2d: (2, ["weight", "bias", "running_mean", "running_var", "eps"], default_matching), torch.nn.modules.pooling.AdaptiveAvgPool2d: (1, [], default_matching), torch.nn.modules.pooling.MaxPool2d: ( 1, ["kernel_size", "stride", "padding", "dilation", "return_indices", "ceil_mode"], default_matching ), torch.nn.modules.activation.ReLU: (1, ["inplace"], default_matching), } @compatibility(is_backward_compatible=False) def extract_attrs_for_lowering(mod: nn.Module) -> Dict[str, Any]: """If `mod` is in `module_fetch_book`, fetch the mod's attributes that in the `module_fetch_book` after checking module's version is compatible with the `module_fetch_book`. """ attrs_for_lowering: Dict[str, Any] = {} attrs_for_lowering["name"] = torch.typename(mod) if type(mod) in module_fetch_book: version, param_to_fetch, matching_method = module_fetch_book[type(mod)] if version < mod._version: raise RuntimeError(f"Fetcher version {version} try to fetch {torch.typename(mod)} version {mod._version}, " "please upgrade the module_fetch_book, open an issue and @842974287 " "or report a bug to AIACC team directly.") for attr in param_to_fetch: attrs_for_lowering[attr] = getattr(mod, matching_method(attr, mod._version)) else: raise RuntimeError(f"{torch.typename(mod)} is not in the module_fetch_book yet, " "please add it to the module_fetch_book, open an issue and @842974287 " "or report a bug to AIACC team directly.") return attrs_for_lowering @compatibility(is_backward_compatible=False) def lift_lowering_attrs_to_nodes(fx_module: GraphModule) -> None: """Recursively traverse all `fx_module` nodes and fetch the module's attributes if the node is a leaf module. """ submodules = dict(fx_module.named_modules()) for node in fx_module.graph.nodes: if node.op == "call_module": if isinstance(submodules[node.target], GraphModule): lift_lowering_attrs_to_nodes(submodules[node.target]) else: node.attrs_for_lowering = extract_attrs_for_lowering(submodules[node.target])