import torch from torch._C import _add_docstr, _special # type: ignore[attr-defined] from torch._torch_docs import common_args, multi_dim_common __all__ = [ 'airy_ai', 'bessel_j0', 'bessel_j1', 'bessel_y0', 'bessel_y1', 'chebyshev_polynomial_t', 'chebyshev_polynomial_u', 'chebyshev_polynomial_v', 'chebyshev_polynomial_w', 'digamma', 'entr', 'erf', 'erfc', 'erfcx', 'erfinv', 'exp2', 'expit', 'expm1', 'gammainc', 'gammaincc', 'gammaln', 'hermite_polynomial_h', 'hermite_polynomial_he', 'i0', 'i0e', 'i1', 'i1e', 'laguerre_polynomial_l', 'legendre_polynomial_p', 'log1p', 'log_ndtr', 'log_softmax', 'logit', 'logsumexp', 'modified_bessel_i0', 'modified_bessel_i1', 'modified_bessel_k0', 'modified_bessel_k1', 'multigammaln', 'ndtr', 'ndtri', 'polygamma', 'psi', 'round', 'shifted_chebyshev_polynomial_t', 'shifted_chebyshev_polynomial_u', 'shifted_chebyshev_polynomial_v', 'shifted_chebyshev_polynomial_w', 'scaled_modified_bessel_k0', 'scaled_modified_bessel_k1', 'sinc', 'softmax', 'spherical_bessel_j0', 'xlog1py', 'xlogy', 'zeta', ] Tensor = torch.Tensor entr = _add_docstr(_special.special_entr, r""" entr(input, *, out=None) -> Tensor Computes the entropy on :attr:`input` (as defined below), elementwise. .. math:: \begin{align} \text{entr(x)} = \begin{cases} -x * \ln(x) & x > 0 \\ 0 & x = 0.0 \\ -\infty & x < 0 \end{cases} \end{align} """ + """ Args: input (Tensor): the input tensor. Keyword args: out (Tensor, optional): the output tensor. Example:: >>> a = torch.arange(-0.5, 1, 0.5) >>> a tensor([-0.5000, 0.0000, 0.5000]) >>> torch.special.entr(a) tensor([ -inf, 0.0000, 0.3466]) """) psi = _add_docstr(_special.special_psi, r""" psi(input, *, out=None) -> Tensor Alias for :func:`torch.special.digamma`. """) digamma = _add_docstr(_special.special_digamma, r""" digamma(input, *, out=None) -> Tensor Computes the logarithmic derivative of the gamma function on `input`. .. math:: \digamma(x) = \frac{d}{dx} \ln\left(\Gamma\left(x\right)\right) = \frac{\Gamma'(x)}{\Gamma(x)} """ + r""" Args: input (Tensor): the tensor to compute the digamma function on Keyword args: {out} .. note:: This function is similar to SciPy's `scipy.special.digamma`. .. note:: From PyTorch 1.8 onwards, the digamma function returns `-Inf` for `0`. Previously it returned `NaN` for `0`. Example:: >>> a = torch.tensor([1, 0.5]) >>> torch.special.digamma(a) tensor([-0.5772, -1.9635]) """.format(**common_args)) gammaln = _add_docstr(_special.special_gammaln, r""" gammaln(input, *, out=None) -> Tensor Computes the natural logarithm of the absolute value of the gamma function on :attr:`input`. .. math:: \text{out}_{i} = \ln \Gamma(|\text{input}_{i}|) """ + """ Args: {input} Keyword args: {out} Example:: >>> a = torch.arange(0.5, 2, 0.5) >>> torch.special.gammaln(a) tensor([ 0.5724, 0.0000, -0.1208]) """.format(**common_args)) polygamma = _add_docstr(_special.special_polygamma, r""" polygamma(n, input, *, out=None) -> Tensor Computes the :math:`n^{th}` derivative of the digamma function on :attr:`input`. :math:`n \geq 0` is called the order of the polygamma function. .. math:: \psi^{(n)}(x) = \frac{d^{(n)}}{dx^{(n)}} \psi(x) .. note:: This function is implemented only for nonnegative integers :math:`n \geq 0`. """ + """ Args: n (int): the order of the polygamma function {input} Keyword args: {out} Example:: >>> a = torch.tensor([1, 0.5]) >>> torch.special.polygamma(1, a) tensor([1.64493, 4.9348]) >>> torch.special.polygamma(2, a) tensor([ -2.4041, -16.8288]) >>> torch.special.polygamma(3, a) tensor([ 6.4939, 97.4091]) >>> torch.special.polygamma(4, a) tensor([ -24.8863, -771.4742]) """.format(**common_args)) erf = _add_docstr(_special.special_erf, r""" erf(input, *, out=None) -> Tensor Computes the error function of :attr:`input`. The error function is defined as follows: .. math:: \mathrm{erf}(x) = \frac{2}{\sqrt{\pi}} \int_{0}^{x} e^{-t^2} dt """ + r""" Args: {input} Keyword args: {out} Example:: >>> torch.special.erf(torch.tensor([0, -1., 10.])) tensor([ 0.0000, -0.8427, 1.0000]) """.format(**common_args)) erfc = _add_docstr(_special.special_erfc, r""" erfc(input, *, out=None) -> Tensor Computes the complementary error function of :attr:`input`. The complementary error function is defined as follows: .. math:: \mathrm{erfc}(x) = 1 - \frac{2}{\sqrt{\pi}} \int_{0}^{x} e^{-t^2} dt """ + r""" Args: {input} Keyword args: {out} Example:: >>> torch.special.erfc(torch.tensor([0, -1., 10.])) tensor([ 1.0000, 1.8427, 0.0000]) """.format(**common_args)) erfcx = _add_docstr(_special.special_erfcx, r""" erfcx(input, *, out=None) -> Tensor Computes the scaled complementary error function for each element of :attr:`input`. The scaled complementary error function is defined as follows: .. math:: \mathrm{erfcx}(x) = e^{x^2} \mathrm{erfc}(x) """ + r""" """ + r""" Args: {input} Keyword args: {out} Example:: >>> torch.special.erfcx(torch.tensor([0, -1., 10.])) tensor([ 1.0000, 5.0090, 0.0561]) """.format(**common_args)) erfinv = _add_docstr(_special.special_erfinv, r""" erfinv(input, *, out=None) -> Tensor Computes the inverse error function of :attr:`input`. The inverse error function is defined in the range :math:`(-1, 1)` as: .. math:: \mathrm{erfinv}(\mathrm{erf}(x)) = x """ + r""" Args: {input} Keyword args: {out} Example:: >>> torch.special.erfinv(torch.tensor([0, 0.5, -1.])) tensor([ 0.0000, 0.4769, -inf]) """.format(**common_args)) logit = _add_docstr(_special.special_logit, r""" logit(input, eps=None, *, out=None) -> Tensor Returns a new tensor with the logit of the elements of :attr:`input`. :attr:`input` is clamped to [eps, 1 - eps] when eps is not None. When eps is None and :attr:`input` < 0 or :attr:`input` > 1, the function will yields NaN. .. math:: \begin{align} y_{i} &= \ln(\frac{z_{i}}{1 - z_{i}}) \\ z_{i} &= \begin{cases} x_{i} & \text{if eps is None} \\ \text{eps} & \text{if } x_{i} < \text{eps} \\ x_{i} & \text{if } \text{eps} \leq x_{i} \leq 1 - \text{eps} \\ 1 - \text{eps} & \text{if } x_{i} > 1 - \text{eps} \end{cases} \end{align} """ + r""" Args: {input} eps (float, optional): the epsilon for input clamp bound. Default: ``None`` Keyword args: {out} Example:: >>> a = torch.rand(5) >>> a tensor([0.2796, 0.9331, 0.6486, 0.1523, 0.6516]) >>> torch.special.logit(a, eps=1e-6) tensor([-0.9466, 2.6352, 0.6131, -1.7169, 0.6261]) """.format(**common_args)) logsumexp = _add_docstr(_special.special_logsumexp, r""" logsumexp(input, dim, keepdim=False, *, out=None) Alias for :func:`torch.logsumexp`. """.format(**multi_dim_common)) expit = _add_docstr(_special.special_expit, r""" expit(input, *, out=None) -> Tensor Computes the expit (also known as the logistic sigmoid function) of the elements of :attr:`input`. .. math:: \text{out}_{i} = \frac{1}{1 + e^{-\text{input}_{i}}} """ + r""" Args: {input} Keyword args: {out} Example:: >>> t = torch.randn(4) >>> t tensor([ 0.9213, 1.0887, -0.8858, -1.7683]) >>> torch.special.expit(t) tensor([ 0.7153, 0.7481, 0.2920, 0.1458]) """.format(**common_args)) exp2 = _add_docstr(_special.special_exp2, r""" exp2(input, *, out=None) -> Tensor Computes the base two exponential function of :attr:`input`. .. math:: y_{i} = 2^{x_{i}} """ + r""" Args: {input} Keyword args: {out} Example:: >>> torch.special.exp2(torch.tensor([0, math.log2(2.), 3, 4])) tensor([ 1., 2., 8., 16.]) """.format(**common_args)) expm1 = _add_docstr(_special.special_expm1, r""" expm1(input, *, out=None) -> Tensor Computes the exponential of the elements minus 1 of :attr:`input`. .. math:: y_{i} = e^{x_{i}} - 1 .. note:: This function provides greater precision than exp(x) - 1 for small values of x. """ + r""" Args: {input} Keyword args: {out} Example:: >>> torch.special.expm1(torch.tensor([0, math.log(2.)])) tensor([ 0., 1.]) """.format(**common_args)) xlog1py = _add_docstr(_special.special_xlog1py, r""" xlog1py(input, other, *, out=None) -> Tensor Computes ``input * log1p(other)`` with the following cases. .. math:: \text{out}_{i} = \begin{cases} \text{NaN} & \text{if } \text{other}_{i} = \text{NaN} \\ 0 & \text{if } \text{input}_{i} = 0.0 \text{ and } \text{other}_{i} != \text{NaN} \\ \text{input}_{i} * \text{log1p}(\text{other}_{i})& \text{otherwise} \end{cases} Similar to SciPy's `scipy.special.xlog1py`. """ + r""" Args: input (Number or Tensor) : Multiplier other (Number or Tensor) : Argument .. note:: At least one of :attr:`input` or :attr:`other` must be a tensor. Keyword args: {out} Example:: >>> x = torch.zeros(5,) >>> y = torch.tensor([-1, 0, 1, float('inf'), float('nan')]) >>> torch.special.xlog1py(x, y) tensor([0., 0., 0., 0., nan]) >>> x = torch.tensor([1, 2, 3]) >>> y = torch.tensor([3, 2, 1]) >>> torch.special.xlog1py(x, y) tensor([1.3863, 2.1972, 2.0794]) >>> torch.special.xlog1py(x, 4) tensor([1.6094, 3.2189, 4.8283]) >>> torch.special.xlog1py(2, y) tensor([2.7726, 2.1972, 1.3863]) """.format(**common_args)) xlogy = _add_docstr(_special.special_xlogy, r""" xlogy(input, other, *, out=None) -> Tensor Computes ``input * log(other)`` with the following cases. .. math:: \text{out}_{i} = \begin{cases} \text{NaN} & \text{if } \text{other}_{i} = \text{NaN} \\ 0 & \text{if } \text{input}_{i} = 0.0 \\ \text{input}_{i} * \log{(\text{other}_{i})} & \text{otherwise} \end{cases} Similar to SciPy's `scipy.special.xlogy`. """ + r""" Args: input (Number or Tensor) : Multiplier other (Number or Tensor) : Argument .. note:: At least one of :attr:`input` or :attr:`other` must be a tensor. Keyword args: {out} Example:: >>> x = torch.zeros(5,) >>> y = torch.tensor([-1, 0, 1, float('inf'), float('nan')]) >>> torch.special.xlogy(x, y) tensor([0., 0., 0., 0., nan]) >>> x = torch.tensor([1, 2, 3]) >>> y = torch.tensor([3, 2, 1]) >>> torch.special.xlogy(x, y) tensor([1.0986, 1.3863, 0.0000]) >>> torch.special.xlogy(x, 4) tensor([1.3863, 2.7726, 4.1589]) >>> torch.special.xlogy(2, y) tensor([2.1972, 1.3863, 0.0000]) """.format(**common_args)) i0 = _add_docstr(_special.special_i0, r""" i0(input, *, out=None) -> Tensor Computes the zeroth order modified Bessel function of the first kind for each element of :attr:`input`. .. math:: \text{out}_{i} = I_0(\text{input}_{i}) = \sum_{k=0}^{\infty} \frac{(\text{input}_{i}^2/4)^k}{(k!)^2} """ + r""" Args: input (Tensor): the input tensor Keyword args: {out} Example:: >>> torch.i0(torch.arange(5, dtype=torch.float32)) tensor([ 1.0000, 1.2661, 2.2796, 4.8808, 11.3019]) """.format(**common_args)) i0e = _add_docstr(_special.special_i0e, r""" i0e(input, *, out=None) -> Tensor Computes the exponentially scaled zeroth order modified Bessel function of the first kind (as defined below) for each element of :attr:`input`. .. math:: \text{out}_{i} = \exp(-|x|) * i0(x) = \exp(-|x|) * \sum_{k=0}^{\infty} \frac{(\text{input}_{i}^2/4)^k}{(k!)^2} """ + r""" Args: {input} Keyword args: {out} Example:: >>> torch.special.i0e(torch.arange(5, dtype=torch.float32)) tensor([1.0000, 0.4658, 0.3085, 0.2430, 0.2070]) """.format(**common_args)) i1 = _add_docstr(_special.special_i1, r""" i1(input, *, out=None) -> Tensor Computes the first order modified Bessel function of the first kind (as defined below) for each element of :attr:`input`. .. math:: \text{out}_{i} = \frac{(\text{input}_{i})}{2} * \sum_{k=0}^{\infty} \frac{(\text{input}_{i}^2/4)^k}{(k!) * (k+1)!} """ + r""" Args: {input} Keyword args: {out} Example:: >>> torch.special.i1(torch.arange(5, dtype=torch.float32)) tensor([0.0000, 0.5652, 1.5906, 3.9534, 9.7595]) """.format(**common_args)) i1e = _add_docstr(_special.special_i1e, r""" i1e(input, *, out=None) -> Tensor Computes the exponentially scaled first order modified Bessel function of the first kind (as defined below) for each element of :attr:`input`. .. math:: \text{out}_{i} = \exp(-|x|) * i1(x) = \exp(-|x|) * \frac{(\text{input}_{i})}{2} * \sum_{k=0}^{\infty} \frac{(\text{input}_{i}^2/4)^k}{(k!) * (k+1)!} """ + r""" Args: {input} Keyword args: {out} Example:: >>> torch.special.i1e(torch.arange(5, dtype=torch.float32)) tensor([0.0000, 0.2079, 0.2153, 0.1968, 0.1788]) """.format(**common_args)) ndtr = _add_docstr(_special.special_ndtr, r""" ndtr(input, *, out=None) -> Tensor Computes the area under the standard Gaussian probability density function, integrated from minus infinity to :attr:`input`, elementwise. .. math:: \text{ndtr}(x) = \frac{1}{\sqrt{2 \pi}}\int_{-\infty}^{x} e^{-\frac{1}{2}t^2} dt """ + r""" Args: {input} Keyword args: {out} Example:: >>> torch.special.ndtr(torch.tensor([-3., -2, -1, 0, 1, 2, 3])) tensor([0.0013, 0.0228, 0.1587, 0.5000, 0.8413, 0.9772, 0.9987]) """.format(**common_args)) ndtri = _add_docstr(_special.special_ndtri, r""" ndtri(input, *, out=None) -> Tensor Computes the argument, x, for which the area under the Gaussian probability density function (integrated from minus infinity to x) is equal to :attr:`input`, elementwise. .. math:: \text{ndtri}(p) = \sqrt{2}\text{erf}^{-1}(2p - 1) .. note:: Also known as quantile function for Normal Distribution. """ + r""" Args: {input} Keyword args: {out} Example:: >>> torch.special.ndtri(torch.tensor([0, 0.25, 0.5, 0.75, 1])) tensor([ -inf, -0.6745, 0.0000, 0.6745, inf]) """.format(**common_args)) log_ndtr = _add_docstr(_special.special_log_ndtr, r""" log_ndtr(input, *, out=None) -> Tensor Computes the log of the area under the standard Gaussian probability density function, integrated from minus infinity to :attr:`input`, elementwise. .. math:: \text{log\_ndtr}(x) = \log\left(\frac{1}{\sqrt{2 \pi}}\int_{-\infty}^{x} e^{-\frac{1}{2}t^2} dt \right) """ + r""" Args: {input} Keyword args: {out} Example:: >>> torch.special.log_ndtr(torch.tensor([-3., -2, -1, 0, 1, 2, 3])) tensor([-6.6077 -3.7832 -1.841 -0.6931 -0.1728 -0.023 -0.0014]) """.format(**common_args)) log1p = _add_docstr(_special.special_log1p, r""" log1p(input, *, out=None) -> Tensor Alias for :func:`torch.log1p`. """) sinc = _add_docstr(_special.special_sinc, r""" sinc(input, *, out=None) -> Tensor Computes the normalized sinc of :attr:`input.` .. math:: \text{out}_{i} = \begin{cases} 1, & \text{if}\ \text{input}_{i}=0 \\ \sin(\pi \text{input}_{i}) / (\pi \text{input}_{i}), & \text{otherwise} \end{cases} """ + r""" Args: {input} Keyword args: {out} Example:: >>> t = torch.randn(4) >>> t tensor([ 0.2252, -0.2948, 1.0267, -1.1566]) >>> torch.special.sinc(t) tensor([ 0.9186, 0.8631, -0.0259, -0.1300]) """.format(**common_args)) round = _add_docstr(_special.special_round, r""" round(input, *, out=None) -> Tensor Alias for :func:`torch.round`. """) softmax = _add_docstr(_special.special_softmax, r""" softmax(input, dim, *, dtype=None) -> Tensor Computes the softmax function. Softmax is defined as: :math:`\text{Softmax}(x_{i}) = \frac{\exp(x_i)}{\sum_j \exp(x_j)}` It is applied to all slices along dim, and will re-scale them so that the elements lie in the range `[0, 1]` and sum to 1. Args: input (Tensor): input dim (int): A dimension along which softmax will be computed. dtype (:class:`torch.dtype`, optional): the desired data type of returned tensor. If specified, the input tensor is cast to :attr:`dtype` before the operation is performed. This is useful for preventing data type overflows. Default: None. Examples:: >>> t = torch.ones(2, 2) >>> torch.special.softmax(t, 0) tensor([[0.5000, 0.5000], [0.5000, 0.5000]]) """) log_softmax = _add_docstr(_special.special_log_softmax, r""" log_softmax(input, dim, *, dtype=None) -> Tensor Computes softmax followed by a logarithm. While mathematically equivalent to log(softmax(x)), doing these two operations separately is slower and numerically unstable. This function is computed as: .. math:: \text{log\_softmax}(x_{i}) = \log\left(\frac{\exp(x_i) }{ \sum_j \exp(x_j)} \right) """ + r""" Args: input (Tensor): input dim (int): A dimension along which log_softmax will be computed. dtype (:class:`torch.dtype`, optional): the desired data type of returned tensor. If specified, the input tensor is cast to :attr:`dtype` before the operation is performed. This is useful for preventing data type overflows. Default: None. Example:: >>> t = torch.ones(2, 2) >>> torch.special.log_softmax(t, 0) tensor([[-0.6931, -0.6931], [-0.6931, -0.6931]]) """) zeta = _add_docstr(_special.special_zeta, r""" zeta(input, other, *, out=None) -> Tensor Computes the Hurwitz zeta function, elementwise. .. math:: \zeta(x, q) = \sum_{k=0}^{\infty} \frac{1}{(k + q)^x} """ + r""" Args: input (Tensor): the input tensor corresponding to `x`. other (Tensor): the input tensor corresponding to `q`. .. note:: The Riemann zeta function corresponds to the case when `q = 1` Keyword args: {out} Example:: >>> x = torch.tensor([2., 4.]) >>> torch.special.zeta(x, 1) tensor([1.6449, 1.0823]) >>> torch.special.zeta(x, torch.tensor([1., 2.])) tensor([1.6449, 0.0823]) >>> torch.special.zeta(2, torch.tensor([1., 2.])) tensor([1.6449, 0.6449]) """.format(**common_args)) multigammaln = _add_docstr(_special.special_multigammaln, r""" multigammaln(input, p, *, out=None) -> Tensor Computes the `multivariate log-gamma function `_ with dimension :math:`p` element-wise, given by .. math:: \log(\Gamma_{p}(a)) = C + \displaystyle \sum_{i=1}^{p} \log\left(\Gamma\left(a - \frac{i - 1}{2}\right)\right) where :math:`C = \log(\pi) \cdot \frac{p (p - 1)}{4}` and :math:`\Gamma(-)` is the Gamma function. All elements must be greater than :math:`\frac{p - 1}{2}`, otherwise the behavior is undefiend. """ + """ Args: input (Tensor): the tensor to compute the multivariate log-gamma function p (int): the number of dimensions Keyword args: {out} Example:: >>> a = torch.empty(2, 3).uniform_(1, 2) >>> a tensor([[1.6835, 1.8474, 1.1929], [1.0475, 1.7162, 1.4180]]) >>> torch.special.multigammaln(a, 2) tensor([[0.3928, 0.4007, 0.7586], [1.0311, 0.3901, 0.5049]]) """.format(**common_args)) gammainc = _add_docstr(_special.special_gammainc, r""" gammainc(input, other, *, out=None) -> Tensor Computes the regularized lower incomplete gamma function: .. math:: \text{out}_{i} = \frac{1}{\Gamma(\text{input}_i)} \int_0^{\text{other}_i} t^{\text{input}_i-1} e^{-t} dt where both :math:`\text{input}_i` and :math:`\text{other}_i` are weakly positive and at least one is strictly positive. If both are zero or either is negative then :math:`\text{out}_i=\text{nan}`. :math:`\Gamma(\cdot)` in the equation above is the gamma function, .. math:: \Gamma(\text{input}_i) = \int_0^\infty t^{(\text{input}_i-1)} e^{-t} dt. See :func:`torch.special.gammaincc` and :func:`torch.special.gammaln` for related functions. Supports :ref:`broadcasting to a common shape ` and float inputs. .. note:: The backward pass with respect to :attr:`input` is not yet supported. Please open an issue on PyTorch's Github to request it. """ + r""" Args: input (Tensor): the first non-negative input tensor other (Tensor): the second non-negative input tensor Keyword args: {out} Example:: >>> a1 = torch.tensor([4.0]) >>> a2 = torch.tensor([3.0, 4.0, 5.0]) >>> a = torch.special.gammaincc(a1, a2) tensor([0.3528, 0.5665, 0.7350]) tensor([0.3528, 0.5665, 0.7350]) >>> b = torch.special.gammainc(a1, a2) + torch.special.gammaincc(a1, a2) tensor([1., 1., 1.]) """.format(**common_args)) gammaincc = _add_docstr(_special.special_gammaincc, r""" gammaincc(input, other, *, out=None) -> Tensor Computes the regularized upper incomplete gamma function: .. math:: \text{out}_{i} = \frac{1}{\Gamma(\text{input}_i)} \int_{\text{other}_i}^{\infty} t^{\text{input}_i-1} e^{-t} dt where both :math:`\text{input}_i` and :math:`\text{other}_i` are weakly positive and at least one is strictly positive. If both are zero or either is negative then :math:`\text{out}_i=\text{nan}`. :math:`\Gamma(\cdot)` in the equation above is the gamma function, .. math:: \Gamma(\text{input}_i) = \int_0^\infty t^{(\text{input}_i-1)} e^{-t} dt. See :func:`torch.special.gammainc` and :func:`torch.special.gammaln` for related functions. Supports :ref:`broadcasting to a common shape ` and float inputs. .. note:: The backward pass with respect to :attr:`input` is not yet supported. Please open an issue on PyTorch's Github to request it. """ + r""" Args: input (Tensor): the first non-negative input tensor other (Tensor): the second non-negative input tensor Keyword args: {out} Example:: >>> a1 = torch.tensor([4.0]) >>> a2 = torch.tensor([3.0, 4.0, 5.0]) >>> a = torch.special.gammaincc(a1, a2) tensor([0.6472, 0.4335, 0.2650]) >>> b = torch.special.gammainc(a1, a2) + torch.special.gammaincc(a1, a2) tensor([1., 1., 1.]) """.format(**common_args)) airy_ai = _add_docstr(_special.special_airy_ai, r""" airy_ai(input, *, out=None) -> Tensor Airy function :math:`\text{Ai}\left(\text{input}\right)`. """ + r""" Args: {input} Keyword args: {out} """.format(**common_args)) bessel_j0 = _add_docstr(_special.special_bessel_j0, r""" bessel_j0(input, *, out=None) -> Tensor Bessel function of the first kind of order :math:`0`. """ + r""" Args: {input} Keyword args: {out} """.format(**common_args)) bessel_j1 = _add_docstr(_special.special_bessel_j1, r""" bessel_j1(input, *, out=None) -> Tensor Bessel function of the first kind of order :math:`1`. """ + r""" Args: {input} Keyword args: {out} """.format(**common_args)) bessel_y0 = _add_docstr(_special.special_bessel_y0, r""" bessel_y0(input, *, out=None) -> Tensor Bessel function of the second kind of order :math:`0`. """ + r""" Args: {input} Keyword args: {out} """.format(**common_args)) bessel_y1 = _add_docstr(_special.special_bessel_y1, r""" bessel_y1(input, *, out=None) -> Tensor Bessel function of the second kind of order :math:`1`. """ + r""" Args: {input} Keyword args: {out} """.format(**common_args)) chebyshev_polynomial_t = _add_docstr(_special.special_chebyshev_polynomial_t, r""" chebyshev_polynomial_t(input, n, *, out=None) -> Tensor Chebyshev polynomial of the first kind :math:`T_{n}(\text{input})`. If :math:`n = 0`, :math:`1` is returned. If :math:`n = 1`, :math:`\text{input}` is returned. If :math:`n < 6` or :math:`|\text{input}| > 1` the recursion: .. math:: T_{n + 1}(\text{input}) = 2 \times \text{input} \times T_{n}(\text{input}) - T_{n - 1}(\text{input}) is evaluated. Otherwise, the explicit trigonometric formula: .. math:: T_{n}(\text{input}) = \text{cos}(n \times \text{arccos}(x)) is evaluated. """ + r""" Args: {input} n (Tensor): Degree of the polynomial. Keyword args: {out} """.format(**common_args)) chebyshev_polynomial_u = _add_docstr(_special.special_chebyshev_polynomial_u, r""" chebyshev_polynomial_t(input, n, *, out=None) -> Tensor Chebyshev polynomial of the second kind :math:`U_{n}(\text{input})`. If :math:`n = 0`, :math:`1` is returned. If :math:`n = 1`, :math:`2 \times \text{input}` is returned. If :math:`n < 6` or :math:`|\text{input}| > 1`, the recursion: .. math:: T_{n + 1}(\text{input}) = 2 \times \text{input} \times T_{n}(\text{input}) - T_{n - 1}(\text{input}) is evaluated. Otherwise, the explicit trigonometric formula: .. math:: \frac{\text{sin}((n + 1) \times \text{arccos}(\text{input}))}{\text{sin}(\text{arccos}(\text{input}))} is evaluated. """ + r""" Args: {input} n (Tensor): Degree of the polynomial. Keyword args: {out} """.format(**common_args)) chebyshev_polynomial_v = _add_docstr(_special.special_chebyshev_polynomial_v, r""" chebyshev_polynomial_v(input, n, *, out=None) -> Tensor Chebyshev polynomial of the third kind :math:`V_{n}^{\ast}(\text{input})`. """ + r""" Args: {input} n (Tensor): Degree of the polynomial. Keyword args: {out} """.format(**common_args)) chebyshev_polynomial_w = _add_docstr(_special.special_chebyshev_polynomial_w, r""" chebyshev_polynomial_w(input, n, *, out=None) -> Tensor Chebyshev polynomial of the fourth kind :math:`W_{n}^{\ast}(\text{input})`. """ + r""" Args: {input} n (Tensor): Degree of the polynomial. Keyword args: {out} """.format(**common_args)) hermite_polynomial_h = _add_docstr(_special.special_hermite_polynomial_h, r""" hermite_polynomial_h(input, n, *, out=None) -> Tensor Physicist’s Hermite polynomial :math:`H_{n}(\text{input})`. If :math:`n = 0`, :math:`1` is returned. If :math:`n = 1`, :math:`\text{input}` is returned. Otherwise, the recursion: .. math:: H_{n + 1}(\text{input}) = 2 \times \text{input} \times H_{n}(\text{input}) - H_{n - 1}(\text{input}) is evaluated. """ + r""" Args: {input} n (Tensor): Degree of the polynomial. Keyword args: {out} """.format(**common_args)) hermite_polynomial_he = _add_docstr(_special.special_hermite_polynomial_he, r""" hermite_polynomial_he(input, n, *, out=None) -> Tensor Probabilist’s Hermite polynomial :math:`He_{n}(\text{input})`. If :math:`n = 0`, :math:`1` is returned. If :math:`n = 1`, :math:`\text{input}` is returned. Otherwise, the recursion: .. math:: He_{n + 1}(\text{input}) = 2 \times \text{input} \times He_{n}(\text{input}) - He_{n - 1}(\text{input}) is evaluated. """ + r""" Args: {input} n (Tensor): Degree of the polynomial. Keyword args: {out} """.format(**common_args)) laguerre_polynomial_l = _add_docstr(_special.special_laguerre_polynomial_l, r""" laguerre_polynomial_l(input, n, *, out=None) -> Tensor Laguerre polynomial :math:`L_{n}(\text{input})`. If :math:`n = 0`, :math:`1` is returned. If :math:`n = 1`, :math:`\text{input}` is returned. Otherwise, the recursion: .. math:: L_{n + 1}(\text{input}) = 2 \times \text{input} \times L_{n}(\text{input}) - L_{n - 1}(\text{input}) is evaluated. """ + r""" Args: {input} n (Tensor): Degree of the polynomial. Keyword args: {out} """.format(**common_args)) legendre_polynomial_p = _add_docstr(_special.special_legendre_polynomial_p, r""" legendre_polynomial_p(input, n, *, out=None) -> Tensor Legendre polynomial :math:`P_{n}(\text{input})`. If :math:`n = 0`, :math:`1` is returned. If :math:`n = 1`, :math:`\text{input}` is returned. Otherwise, the recursion: .. math:: P_{n + 1}(\text{input}) = 2 \times \text{input} \times P_{n}(\text{input}) - P_{n - 1}(\text{input}) is evaluated. """ + r""" Args: {input} n (Tensor): Degree of the polynomial. Keyword args: {out} """.format(**common_args)) modified_bessel_i0 = _add_docstr(_special.special_modified_bessel_i0, r""" modified_bessel_i0(input, *, out=None) -> Tensor Modified Bessel function of the first kind of order :math:`0`. """ + r""" Args: {input} Keyword args: {out} """.format(**common_args)) modified_bessel_i1 = _add_docstr(_special.special_modified_bessel_i1, r""" modified_bessel_i1(input, *, out=None) -> Tensor Modified Bessel function of the first kind of order :math:`1`. """ + r""" Args: {input} Keyword args: {out} """.format(**common_args)) modified_bessel_k0 = _add_docstr(_special.special_modified_bessel_k0, r""" modified_bessel_k0(input, *, out=None) -> Tensor Modified Bessel function of the second kind of order :math:`0`. """ + r""" Args: {input} Keyword args: {out} """.format(**common_args)) modified_bessel_k1 = _add_docstr(_special.special_modified_bessel_k1, r""" modified_bessel_k1(input, *, out=None) -> Tensor Modified Bessel function of the second kind of order :math:`1`. """ + r""" Args: {input} Keyword args: {out} """.format(**common_args)) scaled_modified_bessel_k0 = _add_docstr(_special.special_scaled_modified_bessel_k0, r""" scaled_modified_bessel_k0(input, *, out=None) -> Tensor Scaled modified Bessel function of the second kind of order :math:`0`. """ + r""" Args: {input} Keyword args: {out} """.format(**common_args)) scaled_modified_bessel_k1 = _add_docstr(_special.special_scaled_modified_bessel_k1, r""" scaled_modified_bessel_k1(input, *, out=None) -> Tensor Scaled modified Bessel function of the second kind of order :math:`1`. """ + r""" Args: {input} Keyword args: {out} """.format(**common_args)) shifted_chebyshev_polynomial_t = _add_docstr(_special.special_shifted_chebyshev_polynomial_t, r""" shifted_chebyshev_polynomial_t(input, n, *, out=None) -> Tensor Chebyshev polynomial of the first kind :math:`T_{n}^{\ast}(\text{input})`. """ + r""" Args: {input} n (Tensor): Degree of the polynomial. Keyword args: {out} """.format(**common_args)) shifted_chebyshev_polynomial_u = _add_docstr(_special.special_shifted_chebyshev_polynomial_u, r""" shifted_chebyshev_polynomial_u(input, n, *, out=None) -> Tensor Chebyshev polynomial of the second kind :math:`U_{n}^{\ast}(\text{input})`. """ + r""" Args: {input} n (Tensor): Degree of the polynomial. Keyword args: {out} """.format(**common_args)) shifted_chebyshev_polynomial_v = _add_docstr(_special.special_shifted_chebyshev_polynomial_v, r""" shifted_chebyshev_polynomial_v(input, n, *, out=None) -> Tensor Chebyshev polynomial of the third kind :math:`V_{n}^{\ast}(\text{input})`. """ + r""" Args: {input} n (Tensor): Degree of the polynomial. Keyword args: {out} """.format(**common_args)) shifted_chebyshev_polynomial_w = _add_docstr(_special.special_shifted_chebyshev_polynomial_w, r""" shifted_chebyshev_polynomial_w(input, n, *, out=None) -> Tensor Chebyshev polynomial of the fourth kind :math:`W_{n}^{\ast}(\text{input})`. """ + r""" Args: {input} n (Tensor): Degree of the polynomial. Keyword args: {out} """.format(**common_args)) spherical_bessel_j0 = _add_docstr(_special.special_spherical_bessel_j0, r""" spherical_bessel_j0(input, *, out=None) -> Tensor Spherical Bessel function of the first kind of order :math:`0`. """ + r""" Args: {input} Keyword args: {out} """.format(**common_args))