import logging from typing import Dict, Optional, Tuple, Type import sympy from torch.utils._sympy.functions import FloorDiv log = logging.getLogger(__name__) _MIRROR_REL_OP: Dict[Type[sympy.Basic], Type[sympy.Rel]] = { sympy.Eq: sympy.Eq, sympy.Ne: sympy.Ne, sympy.Ge: sympy.Le, sympy.Gt: sympy.Lt, sympy.Le: sympy.Ge, sympy.Lt: sympy.Gt, } INEQUALITY_TYPES = (sympy.Gt, sympy.Ge, sympy.Lt, sympy.Le) def mirror_rel_op(type: Type) -> Optional[Type[sympy.Rel]]: return _MIRROR_REL_OP.get(type, None) # Tries to simplify 'expr', so as to leave only 'thing' in the left-hand side. # # Returns a tuple of: # 1. The simplified expression # 2. The expression on the right-hand side # # Returns 'None' if it can't reach a state where the only thing in the left # hand side is 'thing'. # # 'trials': number of times 'try_solve' will try to isolate 'thing' to the # left-hand side. # # 'floordiv_inequality': flag to enable conversion of 'FloorDiv' into # inequalities. def try_solve( expr: sympy.Basic, thing: sympy.Basic, trials: int = 5, floordiv_inequality: bool = True, ) -> Optional[Tuple[sympy.Rel, sympy.Basic]]: mirror = mirror_rel_op(type(expr)) # Ignore unsupported expressions: # - Those that are not relational operations # - Those that don't have a mirror (just avoiding unexpected classes) if not isinstance(expr, sympy.Rel) or mirror is None: log.debug("expression with unsupported type: %s", type(expr)) return None lhs_has_thing = expr.lhs.has(thing) rhs_has_thing = expr.rhs.has(thing) # Give up when 'thing' appears on both sides of the relational expression. # That is because, as is, we assume the thing we are trying to isolate is # only on the right-hand side. if lhs_has_thing and rhs_has_thing: log.debug("thing (%s) found in both sides of expression: %s", thing, expr) return None # Try considering both LHS and RHS by mirroring the original expression: # a < b ==> b > a expressions = [] # Add each version of 'expr' if 'thing' is in its left-hand side. if lhs_has_thing: expressions.append(expr) if rhs_has_thing: expressions.append(mirror(expr.rhs, expr.lhs)) for e in expressions: if e is None: continue assert isinstance(e, sympy.Rel) for _ in range(trials): trial = _try_isolate_lhs(e, thing, floordiv_inequality=floordiv_inequality) # Stop if there was no change in this trial. if trial == e: break e = trial # type: ignore[assignment] # Return if we were able to isolate 'thing' on the left-hand side. if isinstance(e, sympy.Rel) and e.lhs == thing: return e, e.rhs return None def _try_isolate_lhs( expr: sympy.Basic, thing: sympy.Basic, floordiv_inequality: bool ) -> sympy.Basic: e = expr op = type(expr) if isinstance(e, sympy.Rel): # Move any constants in the left-hand side to the right-hand side. lhs_not_thing = ( sum([a for a in e.lhs.args if not a.has(thing)]) if isinstance(e.lhs, sympy.Add) else 0 ) e = op(expr.lhs - lhs_not_thing, expr.rhs - lhs_not_thing) # type: ignore[attr-defined] # Divide both sides by the factors that don't contain thing. if isinstance(e, sympy.Rel) and isinstance(e.lhs, sympy.Mul): lhs, rhs = e.args other = sympy.Mul(*[a for a in lhs.args if not a.has(thing)]) # If we can't tell whether 'other' is negative or positive, we do nothing. # That is because we don't know whether we have mirror the operation or not. if not (isinstance(e, INEQUALITY_TYPES) and other.is_negative is None): # Divide both sides by 'other'. lhs = lhs / other rhs = rhs / other # If 'e' is an inequality and 'other' is negative, we have to # mirror the expression. if isinstance(e, INEQUALITY_TYPES) and other.is_negative: op = mirror_rel_op(op) # type: ignore[assignment] assert op is not None e = op(lhs, rhs) ################################################################################ # left-hand side is FloorDiv ################################################################################ # # Given the expression: a // b op c # where 'op' is a relational operation, these rules only work if: # - b > 0 # - c is an integer if ( floordiv_inequality and isinstance(e, sympy.Rel) and isinstance(e.lhs, FloorDiv) and e.lhs.divisor.is_positive and e.rhs.is_integer ): # a // b == expr # => a >= (b * expr) and a < (b * (expr + 1)) if isinstance(expr, sympy.Eq): numerator, denominator = e.lhs.args return sympy.And( sympy.Ge(numerator, (e.rhs * denominator)), # type: ignore[arg-type] sympy.Lt(numerator, ((e.rhs + 1) * denominator)), # type: ignore[arg-type] ) # a // b != expr # => a < (b * expr) or a >= (b * (expr + 1)) if isinstance(expr, sympy.Ne): numerator, denominator = e.lhs.args return sympy.Or( sympy.Lt(numerator, (e.rhs * denominator)), # type: ignore[arg-type] sympy.Ge(numerator, ((e.rhs + 1) * denominator)), # type: ignore[arg-type] ) # The transformations below only work if b is positive. # Note: we only have this information for constants. # a // b > expr => a >= b * (expr + 1) # a // b >= expr => a >= b * expr if isinstance(expr, (sympy.Gt, sympy.Ge)): quotient = e.rhs if isinstance(expr, sympy.Ge) else (e.rhs + 1) # type: ignore[arg-type] return sympy.Ge(e.lhs.args[0], (quotient * e.lhs.args[1])) # type: ignore[arg-type] # a // b < expr => a < b * expr # a // b <= expr => a < b * (expr + 1) if isinstance(expr, (sympy.Lt, sympy.Le)): quotient = e.rhs if isinstance(expr, sympy.Lt) else (e.rhs + 1) # type: ignore[arg-type] return sympy.Lt(e.lhs.args[0], (quotient * e.lhs.args[1])) # type: ignore[arg-type] return e