""" The MIT License (MIT) Copyright (c) Microsoft Corporation Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. """ import math from typing import Optional, Tuple import torch from torch import nn, Tensor class WavLMSelfAttention(nn.Module): """Multi-headed self-attention for WavLM model :cite:`chen2022wavlm`. Wraps around ``torch.nn.MultiheadAttention``, creating relaive position embeddings and passing them to multi-headed attention as a mask. Source: https://github.com/microsoft/unilm/blob/2d8302f09c99bca2b82e6e868d81d4281cceebc8/wavlm/modules.py#L303-L763 Args: embed_dim (int): Total dimension of the model. num_heads (int): The number of heads. dropout (float, optional): Dropout probability on attn_output_weights. (Default: to ``0.0``) bias (bool, optional): If ``True``, add bias to input / output projection layers. (Default: ``True``) has_relative_attention_bias (bool, optional): If ``True``, apply relative position embedding. Necessary in the first encoder layer, but not in the subsequent ones. (Default: ``False``) num_buckets (int, optional): Number of buckets for relative position embedding. (Default: ``32``) max_distance (int, optional): Naximum distance for relative position embedding. (Default: ``128``) gru_rel_pos (bool, optional): If ``True``, apply gated relative position embedding. (Default: ``False``) """ def __init__( self, embed_dim: int, num_heads: int, dropout: float = 0.0, bias: bool = True, has_relative_attention_bias: bool = False, num_buckets: int = 32, max_distance: int = 128, gru_rel_pos: bool = True, ): super().__init__() self.embed_dim = embed_dim self.num_heads = num_heads self.has_relative_attention_bias = has_relative_attention_bias self.num_buckets = num_buckets self.max_distance = max_distance if has_relative_attention_bias: self.rel_attn_embed = nn.Embedding(num_buckets, num_heads) else: self.rel_attn_embed = None self.head_dim = embed_dim // num_heads assert self.head_dim * num_heads == self.embed_dim, "embed_dim must be divisible by num_heads" self.dropout = dropout self.attention = nn.MultiheadAttention(embed_dim, num_heads, dropout=dropout, bias=bias, batch_first=True) self.gru_rel_pos = gru_rel_pos if self.gru_rel_pos: self.gru_rel_pos_linear = nn.Linear(self.head_dim, 8) self.gru_rel_pos_const = nn.Parameter(torch.ones(1, num_heads, 1, 1)) self.has_position_bias = True def compute_bias(self, query_length: int, key_length: int) -> Tensor: """Compute relative position embeddings for WavLM model. Args: query_length (int): Query position can take values between 0 and ``query_length - 1``. key_length (int): Key position can take values between 0 and ``key_length - 1``. Returns: Tensor of shape `(num_heads, query_length, key_length)`, relative positions embeddings """ context_position = torch.arange(query_length, dtype=torch.long)[:, None] memory_position = torch.arange(key_length, dtype=torch.long)[None, :] relative_position = memory_position - context_position # Shape (query_length, key_length) relative_position_bucket = self._relative_positions_bucket(relative_position, bidirectional=True) relative_position_bucket = relative_position_bucket.to(self.rel_attn_embed.weight.device) values = self.rel_attn_embed(relative_position_bucket) # Shape (query_length, key_length, num_heads) values = values.permute([2, 0, 1]) return values def _relative_positions_bucket(self, relative_positions: Tensor, bidirectional: bool = True): """Compute relative position buckets for WavLM model. Computation similar to formula (5) in WavLM paper :cite:`chen2022wavlm`. Args: relative_positions (Tensor): Relative offsets between query and key positions, of shape ``(query_length, key_length)``. bidirectional (bool): If ``True``, values will be filled both above and below the diagonal in the resulting matrix. If ``False``, the elements above the diagonal (i.e. with negative relative offsets) will be set to zero. (Default ``True``) Returns: Tensor of shape ``(query_length, key_length)`` filled bucketed values of with relative positions. """ num_buckets = self.num_buckets max_distance = self.max_distance # Shape (query_length, key_length) relative_buckets = torch.zeros_like(relative_positions, dtype=torch.long) if bidirectional: num_buckets = num_buckets // 2 relative_buckets += (relative_positions > 0).to(torch.long) * num_buckets relative_positions = torch.abs(relative_positions) else: relative_positions = -torch.min(relative_positions, torch.zeros_like(relative_positions)) max_exact = num_buckets // 2 is_small = relative_positions < max_exact relative_postion_if_large = max_exact + ( torch.log(relative_positions.float() / max_exact) / math.log(max_distance / max_exact) * (num_buckets - max_exact) ).to(torch.long) relative_postion_if_large = torch.min( relative_postion_if_large, torch.full_like(relative_postion_if_large, num_buckets - 1) ) relative_buckets += torch.where(is_small, relative_positions, relative_postion_if_large) return relative_buckets def forward( self, query: Tensor, key_padding_mask: Optional[Tensor] = None, attention_mask: Optional[Tensor] = None, position_bias: Optional[Tensor] = None, ) -> Tuple[Tensor, Optional[Tensor]]: """ Args: query (Tensor): Input of shape ``(batch_size, src_len, embed_dim)``. key_padding_mask (Tensor or None, optional): Mask to exclude keys that are pads, of shape `(batch, src_len)`, where padding elements are indicated by 1s. (Default: ``None``) attn_mask: Needs to be ``None``. The argument exists for compatibility with ``EncoderLayer``. (Default: ``None``) position_bias (Tensor or None, optional): Position bias of shape ``(batch_size * num_heads, src_len, src_len)``. When used inside WavLM model encoder, will be generated in the first layer and then passed from each encoder layer to the next one. (Default: ``None``) Returns: attn_output (Tensor): Attention output of shape ``(batch_size, src_len, embed_dim)``. position_bias (Tensor or None): Position bias of shape ``(batch_size * num_heads, src_len, src_len)``. """ bsz, seq_len, embed_dim = query.size() assert embed_dim == self.embed_dim assert attention_mask is None if self.rel_attn_embed is not None and position_bias is None: position_bias = self.compute_bias(seq_len, seq_len) position_bias = position_bias.unsqueeze(0).repeat(bsz, 1, 1, 1) attn_mask_rel_pos: Optional[Tensor] = None if position_bias is not None: attn_mask_rel_pos = position_bias if self.gru_rel_pos: # Apply gating on relative position bias query_layer = query.view(bsz, seq_len, self.num_heads, -1) query_layer = query_layer.permute(0, 2, 1, 3) gate_a, gate_b = torch.sigmoid( self.gru_rel_pos_linear(query_layer).view(bsz, self.num_heads, seq_len, 2, 4).sum(-1, keepdim=False) ).chunk(2, dim=-1) gate_a_1 = gate_a * (gate_b * self.gru_rel_pos_const - 1.0) + 2.0 attn_mask_rel_pos = gate_a_1.view(bsz, self.num_heads, -1, 1) * position_bias attn_mask_rel_pos = attn_mask_rel_pos.view((bsz, self.num_heads, seq_len, seq_len)) if attn_mask_rel_pos is not None and key_padding_mask is not None: key_padding_mask = key_padding_mask.view(bsz, 1, 1, seq_len).expand(-1, self.num_heads, -1, -1) key_padding_mask = torch.nn.functional._canonical_mask( mask=key_padding_mask, mask_name="key_padding_mask", other_type=torch.nn.functional._none_or_dtype(attn_mask_rel_pos), other_name="", target_type=query.dtype, ) if attn_mask_rel_pos is not None and key_padding_mask is not None: attn_mask_rel_pos = attn_mask_rel_pos + key_padding_mask query_projected = torch.nn.functional.linear(query, self.attention.in_proj_weight, self.attention.in_proj_bias) query, key, value = query_projected.chunk(3, -1) shape = (bsz, seq_len, self.num_heads, self.head_dim) query = query.view(shape).transpose(2, 1) # (batch, num_heads, seq_len, head_dim) key = key.view(shape).transpose(2, 1) # (batch, num_heads, seq_len, head_dim) value = value.view(shape).transpose(2, 1) # (batch, num_heads, seq_len, head_dim) dropout = self.dropout if self.training else 0.0 attn_output = torch.nn.functional.scaled_dot_product_attention( query, key, value, attn_mask=attn_mask_rel_pos, dropout_p=dropout, is_causal=False, ) attn_output = attn_output.transpose(1, 2).reshape(bsz, -1, self.num_heads * self.head_dim) attn_output = self.attention.out_proj(attn_output) return attn_output, position_bias