# coding=utf-8 # Copyright 2018 The HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Auto Tokenizer class.""" import importlib import json import os import warnings from collections import OrderedDict from typing import TYPE_CHECKING, Dict, Optional, Tuple, Union from ...configuration_utils import PretrainedConfig from ...dynamic_module_utils import get_class_from_dynamic_module, resolve_trust_remote_code from ...tokenization_utils import PreTrainedTokenizer from ...tokenization_utils_base import TOKENIZER_CONFIG_FILE from ...utils import ( cached_file, extract_commit_hash, is_g2p_en_available, is_sentencepiece_available, is_tokenizers_available, logging, ) from ..encoder_decoder import EncoderDecoderConfig from .auto_factory import _LazyAutoMapping from .configuration_auto import ( CONFIG_MAPPING_NAMES, AutoConfig, config_class_to_model_type, model_type_to_module_name, replace_list_option_in_docstrings, ) if is_tokenizers_available(): from ...tokenization_utils_fast import PreTrainedTokenizerFast else: PreTrainedTokenizerFast = None logger = logging.get_logger(__name__) if TYPE_CHECKING: # This significantly improves completion suggestion performance when # the transformers package is used with Microsoft's Pylance language server. TOKENIZER_MAPPING_NAMES: OrderedDict[str, Tuple[Optional[str], Optional[str]]] = OrderedDict() else: TOKENIZER_MAPPING_NAMES = OrderedDict( [ ( "albert", ( "AlbertTokenizer" if is_sentencepiece_available() else None, "AlbertTokenizerFast" if is_tokenizers_available() else None, ), ), ("align", ("BertTokenizer", "BertTokenizerFast" if is_tokenizers_available() else None)), ("bark", ("BertTokenizer", "BertTokenizerFast" if is_tokenizers_available() else None)), ("bart", ("BartTokenizer", "BartTokenizerFast")), ( "barthez", ( "BarthezTokenizer" if is_sentencepiece_available() else None, "BarthezTokenizerFast" if is_tokenizers_available() else None, ), ), ("bartpho", ("BartphoTokenizer", None)), ("bert", ("BertTokenizer", "BertTokenizerFast" if is_tokenizers_available() else None)), ("bert-generation", ("BertGenerationTokenizer" if is_sentencepiece_available() else None, None)), ("bert-japanese", ("BertJapaneseTokenizer", None)), ("bertweet", ("BertweetTokenizer", None)), ( "big_bird", ( "BigBirdTokenizer" if is_sentencepiece_available() else None, "BigBirdTokenizerFast" if is_tokenizers_available() else None, ), ), ("bigbird_pegasus", ("PegasusTokenizer", "PegasusTokenizerFast" if is_tokenizers_available() else None)), ("biogpt", ("BioGptTokenizer", None)), ("blenderbot", ("BlenderbotTokenizer", "BlenderbotTokenizerFast")), ("blenderbot-small", ("BlenderbotSmallTokenizer", None)), ("blip", ("BertTokenizer", "BertTokenizerFast" if is_tokenizers_available() else None)), ("blip-2", ("GPT2Tokenizer", "GPT2TokenizerFast" if is_tokenizers_available() else None)), ("bloom", (None, "BloomTokenizerFast" if is_tokenizers_available() else None)), ("bridgetower", ("RobertaTokenizer", "RobertaTokenizerFast" if is_tokenizers_available() else None)), ("bros", ("BertTokenizer", "BertTokenizerFast" if is_tokenizers_available() else None)), ("byt5", ("ByT5Tokenizer", None)), ( "camembert", ( "CamembertTokenizer" if is_sentencepiece_available() else None, "CamembertTokenizerFast" if is_tokenizers_available() else None, ), ), ("canine", ("CanineTokenizer", None)), ("chinese_clip", ("BertTokenizer", "BertTokenizerFast" if is_tokenizers_available() else None)), ( "clap", ( "RobertaTokenizer", "RobertaTokenizerFast" if is_tokenizers_available() else None, ), ), ( "clip", ( "CLIPTokenizer", "CLIPTokenizerFast" if is_tokenizers_available() else None, ), ), ( "clipseg", ( "CLIPTokenizer", "CLIPTokenizerFast" if is_tokenizers_available() else None, ), ), ("clvp", ("ClvpTokenizer", None)), ( "code_llama", ( "CodeLlamaTokenizer" if is_sentencepiece_available() else None, "CodeLlamaTokenizerFast" if is_tokenizers_available() else None, ), ), ("codegen", ("CodeGenTokenizer", "CodeGenTokenizerFast" if is_tokenizers_available() else None)), ("cohere", (None, "CohereTokenizerFast" if is_tokenizers_available() else None)), ("convbert", ("ConvBertTokenizer", "ConvBertTokenizerFast" if is_tokenizers_available() else None)), ( "cpm", ( "CpmTokenizer" if is_sentencepiece_available() else None, "CpmTokenizerFast" if is_tokenizers_available() else None, ), ), ("cpmant", ("CpmAntTokenizer", None)), ("ctrl", ("CTRLTokenizer", None)), ("data2vec-audio", ("Wav2Vec2CTCTokenizer", None)), ("data2vec-text", ("RobertaTokenizer", "RobertaTokenizerFast" if is_tokenizers_available() else None)), ("dbrx", ("GPT2Tokenizer", "GPT2TokenizerFast" if is_tokenizers_available() else None)), ("deberta", ("DebertaTokenizer", "DebertaTokenizerFast" if is_tokenizers_available() else None)), ( "deberta-v2", ( "DebertaV2Tokenizer" if is_sentencepiece_available() else None, "DebertaV2TokenizerFast" if is_tokenizers_available() else None, ), ), ("distilbert", ("DistilBertTokenizer", "DistilBertTokenizerFast" if is_tokenizers_available() else None)), ( "dpr", ( "DPRQuestionEncoderTokenizer", "DPRQuestionEncoderTokenizerFast" if is_tokenizers_available() else None, ), ), ("electra", ("ElectraTokenizer", "ElectraTokenizerFast" if is_tokenizers_available() else None)), ("ernie", ("BertTokenizer", "BertTokenizerFast" if is_tokenizers_available() else None)), ("ernie_m", ("ErnieMTokenizer" if is_sentencepiece_available() else None, None)), ("esm", ("EsmTokenizer", None)), ("falcon", (None, "PreTrainedTokenizerFast" if is_tokenizers_available() else None)), ( "fastspeech2_conformer", ("FastSpeech2ConformerTokenizer" if is_g2p_en_available() else None, None), ), ("flaubert", ("FlaubertTokenizer", None)), ("fnet", ("FNetTokenizer", "FNetTokenizerFast" if is_tokenizers_available() else None)), ("fsmt", ("FSMTTokenizer", None)), ("funnel", ("FunnelTokenizer", "FunnelTokenizerFast" if is_tokenizers_available() else None)), ( "gemma", ( "GemmaTokenizer" if is_sentencepiece_available() else None, "GemmaTokenizerFast" if is_tokenizers_available() else None, ), ), ("git", ("BertTokenizer", "BertTokenizerFast" if is_tokenizers_available() else None)), ("gpt-sw3", ("GPTSw3Tokenizer" if is_sentencepiece_available() else None, None)), ("gpt2", ("GPT2Tokenizer", "GPT2TokenizerFast" if is_tokenizers_available() else None)), ("gpt_bigcode", ("GPT2Tokenizer", "GPT2TokenizerFast" if is_tokenizers_available() else None)), ("gpt_neo", ("GPT2Tokenizer", "GPT2TokenizerFast" if is_tokenizers_available() else None)), ("gpt_neox", (None, "GPTNeoXTokenizerFast" if is_tokenizers_available() else None)), ("gpt_neox_japanese", ("GPTNeoXJapaneseTokenizer", None)), ("gptj", ("GPT2Tokenizer", "GPT2TokenizerFast" if is_tokenizers_available() else None)), ("gptsan-japanese", ("GPTSanJapaneseTokenizer", None)), ("grounding-dino", ("BertTokenizer", "BertTokenizerFast" if is_tokenizers_available() else None)), ("groupvit", ("CLIPTokenizer", "CLIPTokenizerFast" if is_tokenizers_available() else None)), ("herbert", ("HerbertTokenizer", "HerbertTokenizerFast" if is_tokenizers_available() else None)), ("hubert", ("Wav2Vec2CTCTokenizer", None)), ("ibert", ("RobertaTokenizer", "RobertaTokenizerFast" if is_tokenizers_available() else None)), ("idefics", (None, "LlamaTokenizerFast" if is_tokenizers_available() else None)), ("idefics2", ("LlamaTokenizer", "LlamaTokenizerFast" if is_tokenizers_available() else None)), ("instructblip", ("GPT2Tokenizer", "GPT2TokenizerFast" if is_tokenizers_available() else None)), ( "jamba", ( "LlamaTokenizer" if is_sentencepiece_available() else None, "LlamaTokenizerFast" if is_tokenizers_available() else None, ), ), ("jukebox", ("JukeboxTokenizer", None)), ( "kosmos-2", ( "XLMRobertaTokenizer" if is_sentencepiece_available() else None, "XLMRobertaTokenizerFast" if is_tokenizers_available() else None, ), ), ("layoutlm", ("LayoutLMTokenizer", "LayoutLMTokenizerFast" if is_tokenizers_available() else None)), ("layoutlmv2", ("LayoutLMv2Tokenizer", "LayoutLMv2TokenizerFast" if is_tokenizers_available() else None)), ("layoutlmv3", ("LayoutLMv3Tokenizer", "LayoutLMv3TokenizerFast" if is_tokenizers_available() else None)), ("layoutxlm", ("LayoutXLMTokenizer", "LayoutXLMTokenizerFast" if is_tokenizers_available() else None)), ("led", ("LEDTokenizer", "LEDTokenizerFast" if is_tokenizers_available() else None)), ("lilt", ("LayoutLMv3Tokenizer", "LayoutLMv3TokenizerFast" if is_tokenizers_available() else None)), ( "llama", ( "LlamaTokenizer" if is_sentencepiece_available() else None, "LlamaTokenizerFast" if is_tokenizers_available() else None, ), ), ("llava", ("LlamaTokenizer", "LlamaTokenizerFast" if is_tokenizers_available() else None)), ("llava_next", ("LlamaTokenizer", "LlamaTokenizerFast" if is_tokenizers_available() else None)), ("longformer", ("LongformerTokenizer", "LongformerTokenizerFast" if is_tokenizers_available() else None)), ( "longt5", ( "T5Tokenizer" if is_sentencepiece_available() else None, "T5TokenizerFast" if is_tokenizers_available() else None, ), ), ("luke", ("LukeTokenizer", None)), ("lxmert", ("LxmertTokenizer", "LxmertTokenizerFast" if is_tokenizers_available() else None)), ("m2m_100", ("M2M100Tokenizer" if is_sentencepiece_available() else None, None)), ("mamba", (None, "GPTNeoXTokenizerFast" if is_tokenizers_available() else None)), ("marian", ("MarianTokenizer" if is_sentencepiece_available() else None, None)), ( "mbart", ( "MBartTokenizer" if is_sentencepiece_available() else None, "MBartTokenizerFast" if is_tokenizers_available() else None, ), ), ( "mbart50", ( "MBart50Tokenizer" if is_sentencepiece_available() else None, "MBart50TokenizerFast" if is_tokenizers_available() else None, ), ), ("mega", ("RobertaTokenizer", "RobertaTokenizerFast" if is_tokenizers_available() else None)), ("megatron-bert", ("BertTokenizer", "BertTokenizerFast" if is_tokenizers_available() else None)), ("mgp-str", ("MgpstrTokenizer", None)), ( "mistral", ( "LlamaTokenizer" if is_sentencepiece_available() else None, "LlamaTokenizerFast" if is_tokenizers_available() else None, ), ), ( "mixtral", ( "LlamaTokenizer" if is_sentencepiece_available() else None, "LlamaTokenizerFast" if is_tokenizers_available() else None, ), ), ("mluke", ("MLukeTokenizer" if is_sentencepiece_available() else None, None)), ("mobilebert", ("MobileBertTokenizer", "MobileBertTokenizerFast" if is_tokenizers_available() else None)), ("mpnet", ("MPNetTokenizer", "MPNetTokenizerFast" if is_tokenizers_available() else None)), ("mpt", (None, "GPTNeoXTokenizerFast" if is_tokenizers_available() else None)), ("mra", ("RobertaTokenizer", "RobertaTokenizerFast" if is_tokenizers_available() else None)), ( "mt5", ( "MT5Tokenizer" if is_sentencepiece_available() else None, "MT5TokenizerFast" if is_tokenizers_available() else None, ), ), ("musicgen", ("T5Tokenizer", "T5TokenizerFast" if is_tokenizers_available() else None)), ("musicgen_melody", ("T5Tokenizer", "T5TokenizerFast" if is_tokenizers_available() else None)), ("mvp", ("MvpTokenizer", "MvpTokenizerFast" if is_tokenizers_available() else None)), ("nezha", ("BertTokenizer", "BertTokenizerFast" if is_tokenizers_available() else None)), ( "nllb", ( "NllbTokenizer" if is_sentencepiece_available() else None, "NllbTokenizerFast" if is_tokenizers_available() else None, ), ), ( "nllb-moe", ( "NllbTokenizer" if is_sentencepiece_available() else None, "NllbTokenizerFast" if is_tokenizers_available() else None, ), ), ( "nystromformer", ( "AlbertTokenizer" if is_sentencepiece_available() else None, "AlbertTokenizerFast" if is_tokenizers_available() else None, ), ), ("olmo", (None, "GPTNeoXTokenizerFast" if is_tokenizers_available() else None)), ("oneformer", ("CLIPTokenizer", "CLIPTokenizerFast" if is_tokenizers_available() else None)), ( "openai-gpt", ("OpenAIGPTTokenizer", "OpenAIGPTTokenizerFast" if is_tokenizers_available() else None), ), ("opt", ("GPT2Tokenizer", "GPT2TokenizerFast" if is_tokenizers_available() else None)), ("owlv2", ("CLIPTokenizer", "CLIPTokenizerFast" if is_tokenizers_available() else None)), ("owlvit", ("CLIPTokenizer", "CLIPTokenizerFast" if is_tokenizers_available() else None)), ( "pegasus", ( "PegasusTokenizer" if is_sentencepiece_available() else None, "PegasusTokenizerFast" if is_tokenizers_available() else None, ), ), ( "pegasus_x", ( "PegasusTokenizer" if is_sentencepiece_available() else None, "PegasusTokenizerFast" if is_tokenizers_available() else None, ), ), ( "perceiver", ( "PerceiverTokenizer", None, ), ), ( "persimmon", ( "LlamaTokenizer" if is_sentencepiece_available() else None, "LlamaTokenizerFast" if is_tokenizers_available() else None, ), ), ("phi", ("CodeGenTokenizer", "CodeGenTokenizerFast" if is_tokenizers_available() else None)), ("phobert", ("PhobertTokenizer", None)), ("pix2struct", ("T5Tokenizer", "T5TokenizerFast" if is_tokenizers_available() else None)), ("plbart", ("PLBartTokenizer" if is_sentencepiece_available() else None, None)), ("prophetnet", ("ProphetNetTokenizer", None)), ("qdqbert", ("BertTokenizer", "BertTokenizerFast" if is_tokenizers_available() else None)), ( "qwen2", ( "Qwen2Tokenizer", "Qwen2TokenizerFast" if is_tokenizers_available() else None, ), ), ( "qwen2_moe", ( "Qwen2Tokenizer", "Qwen2TokenizerFast" if is_tokenizers_available() else None, ), ), ("rag", ("RagTokenizer", None)), ("realm", ("RealmTokenizer", "RealmTokenizerFast" if is_tokenizers_available() else None)), ( "recurrent_gemma", ( "GemmaTokenizer" if is_sentencepiece_available() else None, "GemmaTokenizerFast" if is_tokenizers_available() else None, ), ), ( "reformer", ( "ReformerTokenizer" if is_sentencepiece_available() else None, "ReformerTokenizerFast" if is_tokenizers_available() else None, ), ), ( "rembert", ( "RemBertTokenizer" if is_sentencepiece_available() else None, "RemBertTokenizerFast" if is_tokenizers_available() else None, ), ), ("retribert", ("RetriBertTokenizer", "RetriBertTokenizerFast" if is_tokenizers_available() else None)), ("roberta", ("RobertaTokenizer", "RobertaTokenizerFast" if is_tokenizers_available() else None)), ( "roberta-prelayernorm", ("RobertaTokenizer", "RobertaTokenizerFast" if is_tokenizers_available() else None), ), ("roc_bert", ("RoCBertTokenizer", None)), ("roformer", ("RoFormerTokenizer", "RoFormerTokenizerFast" if is_tokenizers_available() else None)), ("rwkv", (None, "GPTNeoXTokenizerFast" if is_tokenizers_available() else None)), ( "seamless_m4t", ( "SeamlessM4TTokenizer" if is_sentencepiece_available() else None, "SeamlessM4TTokenizerFast" if is_tokenizers_available() else None, ), ), ( "seamless_m4t_v2", ( "SeamlessM4TTokenizer" if is_sentencepiece_available() else None, "SeamlessM4TTokenizerFast" if is_tokenizers_available() else None, ), ), ("siglip", ("SiglipTokenizer" if is_sentencepiece_available() else None, None)), ("speech_to_text", ("Speech2TextTokenizer" if is_sentencepiece_available() else None, None)), ("speech_to_text_2", ("Speech2Text2Tokenizer", None)), ("speecht5", ("SpeechT5Tokenizer" if is_sentencepiece_available() else None, None)), ("splinter", ("SplinterTokenizer", "SplinterTokenizerFast")), ( "squeezebert", ("SqueezeBertTokenizer", "SqueezeBertTokenizerFast" if is_tokenizers_available() else None), ), ("stablelm", (None, "GPTNeoXTokenizerFast" if is_tokenizers_available() else None)), ("starcoder2", ("GPT2Tokenizer", "GPT2TokenizerFast" if is_tokenizers_available() else None)), ( "switch_transformers", ( "T5Tokenizer" if is_sentencepiece_available() else None, "T5TokenizerFast" if is_tokenizers_available() else None, ), ), ( "t5", ( "T5Tokenizer" if is_sentencepiece_available() else None, "T5TokenizerFast" if is_tokenizers_available() else None, ), ), ("tapas", ("TapasTokenizer", None)), ("tapex", ("TapexTokenizer", None)), ("transfo-xl", ("TransfoXLTokenizer", None)), ("tvp", ("BertTokenizer", "BertTokenizerFast" if is_tokenizers_available() else None)), ( "udop", ( "UdopTokenizer" if is_sentencepiece_available() else None, "UdopTokenizerFast" if is_tokenizers_available() else None, ), ), ( "umt5", ( "T5Tokenizer" if is_sentencepiece_available() else None, "T5TokenizerFast" if is_tokenizers_available() else None, ), ), ("vilt", ("BertTokenizer", "BertTokenizerFast" if is_tokenizers_available() else None)), ("vipllava", ("LlamaTokenizer", "LlamaTokenizerFast" if is_tokenizers_available() else None)), ("visual_bert", ("BertTokenizer", "BertTokenizerFast" if is_tokenizers_available() else None)), ("vits", ("VitsTokenizer", None)), ("wav2vec2", ("Wav2Vec2CTCTokenizer", None)), ("wav2vec2-bert", ("Wav2Vec2CTCTokenizer", None)), ("wav2vec2-conformer", ("Wav2Vec2CTCTokenizer", None)), ("wav2vec2_phoneme", ("Wav2Vec2PhonemeCTCTokenizer", None)), ("whisper", ("WhisperTokenizer", "WhisperTokenizerFast" if is_tokenizers_available() else None)), ("xclip", ("CLIPTokenizer", "CLIPTokenizerFast" if is_tokenizers_available() else None)), ( "xglm", ( "XGLMTokenizer" if is_sentencepiece_available() else None, "XGLMTokenizerFast" if is_tokenizers_available() else None, ), ), ("xlm", ("XLMTokenizer", None)), ("xlm-prophetnet", ("XLMProphetNetTokenizer" if is_sentencepiece_available() else None, None)), ( "xlm-roberta", ( "XLMRobertaTokenizer" if is_sentencepiece_available() else None, "XLMRobertaTokenizerFast" if is_tokenizers_available() else None, ), ), ( "xlm-roberta-xl", ( "XLMRobertaTokenizer" if is_sentencepiece_available() else None, "XLMRobertaTokenizerFast" if is_tokenizers_available() else None, ), ), ( "xlnet", ( "XLNetTokenizer" if is_sentencepiece_available() else None, "XLNetTokenizerFast" if is_tokenizers_available() else None, ), ), ( "xmod", ( "XLMRobertaTokenizer" if is_sentencepiece_available() else None, "XLMRobertaTokenizerFast" if is_tokenizers_available() else None, ), ), ( "yoso", ( "AlbertTokenizer" if is_sentencepiece_available() else None, "AlbertTokenizerFast" if is_tokenizers_available() else None, ), ), ] ) TOKENIZER_MAPPING = _LazyAutoMapping(CONFIG_MAPPING_NAMES, TOKENIZER_MAPPING_NAMES) CONFIG_TO_TYPE = {v: k for k, v in CONFIG_MAPPING_NAMES.items()} def tokenizer_class_from_name(class_name: str): if class_name == "PreTrainedTokenizerFast": return PreTrainedTokenizerFast for module_name, tokenizers in TOKENIZER_MAPPING_NAMES.items(): if class_name in tokenizers: module_name = model_type_to_module_name(module_name) module = importlib.import_module(f".{module_name}", "transformers.models") try: return getattr(module, class_name) except AttributeError: continue for config, tokenizers in TOKENIZER_MAPPING._extra_content.items(): for tokenizer in tokenizers: if getattr(tokenizer, "__name__", None) == class_name: return tokenizer # We did not fine the class, but maybe it's because a dep is missing. In that case, the class will be in the main # init and we return the proper dummy to get an appropriate error message. main_module = importlib.import_module("transformers") if hasattr(main_module, class_name): return getattr(main_module, class_name) return None def get_tokenizer_config( pretrained_model_name_or_path: Union[str, os.PathLike], cache_dir: Optional[Union[str, os.PathLike]] = None, force_download: bool = False, resume_download: bool = False, proxies: Optional[Dict[str, str]] = None, token: Optional[Union[bool, str]] = None, revision: Optional[str] = None, local_files_only: bool = False, subfolder: str = "", **kwargs, ): """ Loads the tokenizer configuration from a pretrained model tokenizer configuration. Args: pretrained_model_name_or_path (`str` or `os.PathLike`): This can be either: - a string, the *model id* of a pretrained model configuration hosted inside a model repo on huggingface.co. - a path to a *directory* containing a configuration file saved using the [`~PreTrainedTokenizer.save_pretrained`] method, e.g., `./my_model_directory/`. cache_dir (`str` or `os.PathLike`, *optional*): Path to a directory in which a downloaded pretrained model configuration should be cached if the standard cache should not be used. force_download (`bool`, *optional*, defaults to `False`): Whether or not to force to (re-)download the configuration files and override the cached versions if they exist. resume_download (`bool`, *optional*, defaults to `False`): Whether or not to delete incompletely received file. Attempts to resume the download if such a file exists. proxies (`Dict[str, str]`, *optional*): A dictionary of proxy servers to use by protocol or endpoint, e.g., `{'http': 'foo.bar:3128', 'http://hostname': 'foo.bar:4012'}.` The proxies are used on each request. token (`str` or *bool*, *optional*): The token to use as HTTP bearer authorization for remote files. If `True`, will use the token generated when running `huggingface-cli login` (stored in `~/.huggingface`). revision (`str`, *optional*, defaults to `"main"`): The specific model version to use. It can be a branch name, a tag name, or a commit id, since we use a git-based system for storing models and other artifacts on huggingface.co, so `revision` can be any identifier allowed by git. local_files_only (`bool`, *optional*, defaults to `False`): If `True`, will only try to load the tokenizer configuration from local files. subfolder (`str`, *optional*, defaults to `""`): In case the tokenizer config is located inside a subfolder of the model repo on huggingface.co, you can specify the folder name here. Passing `token=True` is required when you want to use a private model. Returns: `Dict`: The configuration of the tokenizer. Examples: ```python # Download configuration from huggingface.co and cache. tokenizer_config = get_tokenizer_config("google-bert/bert-base-uncased") # This model does not have a tokenizer config so the result will be an empty dict. tokenizer_config = get_tokenizer_config("FacebookAI/xlm-roberta-base") # Save a pretrained tokenizer locally and you can reload its config from transformers import AutoTokenizer tokenizer = AutoTokenizer.from_pretrained("google-bert/bert-base-cased") tokenizer.save_pretrained("tokenizer-test") tokenizer_config = get_tokenizer_config("tokenizer-test") ```""" use_auth_token = kwargs.pop("use_auth_token", None) if use_auth_token is not None: warnings.warn( "The `use_auth_token` argument is deprecated and will be removed in v5 of Transformers. Please use `token` instead.", FutureWarning, ) if token is not None: raise ValueError("`token` and `use_auth_token` are both specified. Please set only the argument `token`.") token = use_auth_token commit_hash = kwargs.get("_commit_hash", None) resolved_config_file = cached_file( pretrained_model_name_or_path, TOKENIZER_CONFIG_FILE, cache_dir=cache_dir, force_download=force_download, resume_download=resume_download, proxies=proxies, token=token, revision=revision, local_files_only=local_files_only, subfolder=subfolder, _raise_exceptions_for_gated_repo=False, _raise_exceptions_for_missing_entries=False, _raise_exceptions_for_connection_errors=False, _commit_hash=commit_hash, ) if resolved_config_file is None: logger.info("Could not locate the tokenizer configuration file, will try to use the model config instead.") return {} commit_hash = extract_commit_hash(resolved_config_file, commit_hash) with open(resolved_config_file, encoding="utf-8") as reader: result = json.load(reader) result["_commit_hash"] = commit_hash return result class AutoTokenizer: r""" This is a generic tokenizer class that will be instantiated as one of the tokenizer classes of the library when created with the [`AutoTokenizer.from_pretrained`] class method. This class cannot be instantiated directly using `__init__()` (throws an error). """ def __init__(self): raise EnvironmentError( "AutoTokenizer is designed to be instantiated " "using the `AutoTokenizer.from_pretrained(pretrained_model_name_or_path)` method." ) @classmethod @replace_list_option_in_docstrings(TOKENIZER_MAPPING_NAMES) def from_pretrained(cls, pretrained_model_name_or_path, *inputs, **kwargs): r""" Instantiate one of the tokenizer classes of the library from a pretrained model vocabulary. The tokenizer class to instantiate is selected based on the `model_type` property of the config object (either passed as an argument or loaded from `pretrained_model_name_or_path` if possible), or when it's missing, by falling back to using pattern matching on `pretrained_model_name_or_path`: List options Params: pretrained_model_name_or_path (`str` or `os.PathLike`): Can be either: - A string, the *model id* of a predefined tokenizer hosted inside a model repo on huggingface.co. - A path to a *directory* containing vocabulary files required by the tokenizer, for instance saved using the [`~PreTrainedTokenizer.save_pretrained`] method, e.g., `./my_model_directory/`. - A path or url to a single saved vocabulary file if and only if the tokenizer only requires a single vocabulary file (like Bert or XLNet), e.g.: `./my_model_directory/vocab.txt`. (Not applicable to all derived classes) inputs (additional positional arguments, *optional*): Will be passed along to the Tokenizer `__init__()` method. config ([`PretrainedConfig`], *optional*) The configuration object used to determine the tokenizer class to instantiate. cache_dir (`str` or `os.PathLike`, *optional*): Path to a directory in which a downloaded pretrained model configuration should be cached if the standard cache should not be used. force_download (`bool`, *optional*, defaults to `False`): Whether or not to force the (re-)download the model weights and configuration files and override the cached versions if they exist. resume_download (`bool`, *optional*, defaults to `False`): Whether or not to delete incompletely received files. Will attempt to resume the download if such a file exists. proxies (`Dict[str, str]`, *optional*): A dictionary of proxy servers to use by protocol or endpoint, e.g., `{'http': 'foo.bar:3128', 'http://hostname': 'foo.bar:4012'}`. The proxies are used on each request. revision (`str`, *optional*, defaults to `"main"`): The specific model version to use. It can be a branch name, a tag name, or a commit id, since we use a git-based system for storing models and other artifacts on huggingface.co, so `revision` can be any identifier allowed by git. subfolder (`str`, *optional*): In case the relevant files are located inside a subfolder of the model repo on huggingface.co (e.g. for facebook/rag-token-base), specify it here. use_fast (`bool`, *optional*, defaults to `True`): Use a [fast Rust-based tokenizer](https://huggingface.co/docs/tokenizers/index) if it is supported for a given model. If a fast tokenizer is not available for a given model, a normal Python-based tokenizer is returned instead. tokenizer_type (`str`, *optional*): Tokenizer type to be loaded. trust_remote_code (`bool`, *optional*, defaults to `False`): Whether or not to allow for custom models defined on the Hub in their own modeling files. This option should only be set to `True` for repositories you trust and in which you have read the code, as it will execute code present on the Hub on your local machine. kwargs (additional keyword arguments, *optional*): Will be passed to the Tokenizer `__init__()` method. Can be used to set special tokens like `bos_token`, `eos_token`, `unk_token`, `sep_token`, `pad_token`, `cls_token`, `mask_token`, `additional_special_tokens`. See parameters in the `__init__()` for more details. Examples: ```python >>> from transformers import AutoTokenizer >>> # Download vocabulary from huggingface.co and cache. >>> tokenizer = AutoTokenizer.from_pretrained("google-bert/bert-base-uncased") >>> # Download vocabulary from huggingface.co (user-uploaded) and cache. >>> tokenizer = AutoTokenizer.from_pretrained("dbmdz/bert-base-german-cased") >>> # If vocabulary files are in a directory (e.g. tokenizer was saved using *save_pretrained('./test/saved_model/')*) >>> # tokenizer = AutoTokenizer.from_pretrained("./test/bert_saved_model/") >>> # Download vocabulary from huggingface.co and define model-specific arguments >>> tokenizer = AutoTokenizer.from_pretrained("FacebookAI/roberta-base", add_prefix_space=True) ```""" use_auth_token = kwargs.pop("use_auth_token", None) if use_auth_token is not None: warnings.warn( "The `use_auth_token` argument is deprecated and will be removed in v5 of Transformers. Please use `token` instead.", FutureWarning, ) if kwargs.get("token", None) is not None: raise ValueError( "`token` and `use_auth_token` are both specified. Please set only the argument `token`." ) kwargs["token"] = use_auth_token config = kwargs.pop("config", None) kwargs["_from_auto"] = True use_fast = kwargs.pop("use_fast", True) tokenizer_type = kwargs.pop("tokenizer_type", None) trust_remote_code = kwargs.pop("trust_remote_code", None) # First, let's see whether the tokenizer_type is passed so that we can leverage it if tokenizer_type is not None: tokenizer_class = None tokenizer_class_tuple = TOKENIZER_MAPPING_NAMES.get(tokenizer_type, None) if tokenizer_class_tuple is None: raise ValueError( f"Passed `tokenizer_type` {tokenizer_type} does not exist. `tokenizer_type` should be one of " f"{', '.join(c for c in TOKENIZER_MAPPING_NAMES.keys())}." ) tokenizer_class_name, tokenizer_fast_class_name = tokenizer_class_tuple if use_fast: if tokenizer_fast_class_name is not None: tokenizer_class = tokenizer_class_from_name(tokenizer_fast_class_name) else: logger.warning( "`use_fast` is set to `True` but the tokenizer class does not have a fast version. " " Falling back to the slow version." ) if tokenizer_class is None: tokenizer_class = tokenizer_class_from_name(tokenizer_class_name) if tokenizer_class is None: raise ValueError(f"Tokenizer class {tokenizer_class_name} is not currently imported.") return tokenizer_class.from_pretrained(pretrained_model_name_or_path, *inputs, **kwargs) # Next, let's try to use the tokenizer_config file to get the tokenizer class. tokenizer_config = get_tokenizer_config(pretrained_model_name_or_path, **kwargs) if "_commit_hash" in tokenizer_config: kwargs["_commit_hash"] = tokenizer_config["_commit_hash"] config_tokenizer_class = tokenizer_config.get("tokenizer_class") tokenizer_auto_map = None if "auto_map" in tokenizer_config: if isinstance(tokenizer_config["auto_map"], (tuple, list)): # Legacy format for dynamic tokenizers tokenizer_auto_map = tokenizer_config["auto_map"] else: tokenizer_auto_map = tokenizer_config["auto_map"].get("AutoTokenizer", None) # If that did not work, let's try to use the config. if config_tokenizer_class is None: if not isinstance(config, PretrainedConfig): config = AutoConfig.from_pretrained( pretrained_model_name_or_path, trust_remote_code=trust_remote_code, **kwargs ) config_tokenizer_class = config.tokenizer_class if hasattr(config, "auto_map") and "AutoTokenizer" in config.auto_map: tokenizer_auto_map = config.auto_map["AutoTokenizer"] has_remote_code = tokenizer_auto_map is not None has_local_code = type(config) in TOKENIZER_MAPPING or ( config_tokenizer_class is not None and ( tokenizer_class_from_name(config_tokenizer_class) is not None or tokenizer_class_from_name(config_tokenizer_class + "Fast") is not None ) ) trust_remote_code = resolve_trust_remote_code( trust_remote_code, pretrained_model_name_or_path, has_local_code, has_remote_code ) if has_remote_code and trust_remote_code: if use_fast and tokenizer_auto_map[1] is not None: class_ref = tokenizer_auto_map[1] else: class_ref = tokenizer_auto_map[0] tokenizer_class = get_class_from_dynamic_module(class_ref, pretrained_model_name_or_path, **kwargs) _ = kwargs.pop("code_revision", None) if os.path.isdir(pretrained_model_name_or_path): tokenizer_class.register_for_auto_class() return tokenizer_class.from_pretrained( pretrained_model_name_or_path, *inputs, trust_remote_code=trust_remote_code, **kwargs ) elif config_tokenizer_class is not None: tokenizer_class = None if use_fast and not config_tokenizer_class.endswith("Fast"): tokenizer_class_candidate = f"{config_tokenizer_class}Fast" tokenizer_class = tokenizer_class_from_name(tokenizer_class_candidate) if tokenizer_class is None: tokenizer_class_candidate = config_tokenizer_class tokenizer_class = tokenizer_class_from_name(tokenizer_class_candidate) if tokenizer_class is None: raise ValueError( f"Tokenizer class {tokenizer_class_candidate} does not exist or is not currently imported." ) return tokenizer_class.from_pretrained(pretrained_model_name_or_path, *inputs, **kwargs) # Otherwise we have to be creative. # if model is an encoder decoder, the encoder tokenizer class is used by default if isinstance(config, EncoderDecoderConfig): if type(config.decoder) is not type(config.encoder): # noqa: E721 logger.warning( f"The encoder model config class: {config.encoder.__class__} is different from the decoder model " f"config class: {config.decoder.__class__}. It is not recommended to use the " "`AutoTokenizer.from_pretrained()` method in this case. Please use the encoder and decoder " "specific tokenizer classes." ) config = config.encoder model_type = config_class_to_model_type(type(config).__name__) if model_type is not None: tokenizer_class_py, tokenizer_class_fast = TOKENIZER_MAPPING[type(config)] if tokenizer_class_fast and (use_fast or tokenizer_class_py is None): return tokenizer_class_fast.from_pretrained(pretrained_model_name_or_path, *inputs, **kwargs) else: if tokenizer_class_py is not None: return tokenizer_class_py.from_pretrained(pretrained_model_name_or_path, *inputs, **kwargs) else: raise ValueError( "This tokenizer cannot be instantiated. Please make sure you have `sentencepiece` installed " "in order to use this tokenizer." ) raise ValueError( f"Unrecognized configuration class {config.__class__} to build an AutoTokenizer.\n" f"Model type should be one of {', '.join(c.__name__ for c in TOKENIZER_MAPPING.keys())}." ) def register(config_class, slow_tokenizer_class=None, fast_tokenizer_class=None, exist_ok=False): """ Register a new tokenizer in this mapping. Args: config_class ([`PretrainedConfig`]): The configuration corresponding to the model to register. slow_tokenizer_class ([`PretrainedTokenizer`], *optional*): The slow tokenizer to register. fast_tokenizer_class ([`PretrainedTokenizerFast`], *optional*): The fast tokenizer to register. """ if slow_tokenizer_class is None and fast_tokenizer_class is None: raise ValueError("You need to pass either a `slow_tokenizer_class` or a `fast_tokenizer_class") if slow_tokenizer_class is not None and issubclass(slow_tokenizer_class, PreTrainedTokenizerFast): raise ValueError("You passed a fast tokenizer in the `slow_tokenizer_class`.") if fast_tokenizer_class is not None and issubclass(fast_tokenizer_class, PreTrainedTokenizer): raise ValueError("You passed a slow tokenizer in the `fast_tokenizer_class`.") if ( slow_tokenizer_class is not None and fast_tokenizer_class is not None and issubclass(fast_tokenizer_class, PreTrainedTokenizerFast) and fast_tokenizer_class.slow_tokenizer_class != slow_tokenizer_class ): raise ValueError( "The fast tokenizer class you are passing has a `slow_tokenizer_class` attribute that is not " "consistent with the slow tokenizer class you passed (fast tokenizer has " f"{fast_tokenizer_class.slow_tokenizer_class} and you passed {slow_tokenizer_class}. Fix one of those " "so they match!" ) # Avoid resetting a set slow/fast tokenizer if we are passing just the other ones. if config_class in TOKENIZER_MAPPING._extra_content: existing_slow, existing_fast = TOKENIZER_MAPPING[config_class] if slow_tokenizer_class is None: slow_tokenizer_class = existing_slow if fast_tokenizer_class is None: fast_tokenizer_class = existing_fast TOKENIZER_MAPPING.register(config_class, (slow_tokenizer_class, fast_tokenizer_class), exist_ok=exist_ok)