# coding=utf-8 # Copyright 2022 The HuggingFace Team and Microsoft Research AI4Science All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ BioGPT model configuration""" from ...configuration_utils import PretrainedConfig from ...utils import logging logger = logging.get_logger(__name__) from ..deprecated._archive_maps import BIOGPT_PRETRAINED_CONFIG_ARCHIVE_MAP # noqa: F401, E402 class BioGptConfig(PretrainedConfig): r""" This is the configuration class to store the configuration of a [`BioGptModel`]. It is used to instantiate an BioGPT model according to the specified arguments, defining the model architecture. Instantiating a configuration with the defaults will yield a similar configuration to that of the BioGPT [microsoft/biogpt](https://huggingface.co/microsoft/biogpt) architecture. Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the documentation from [`PretrainedConfig`] for more information. Args: vocab_size (`int`, *optional*, defaults to 42384): Vocabulary size of the BioGPT model. Defines the number of different tokens that can be represented by the `inputs_ids` passed when calling [`BioGptModel`]. hidden_size (`int`, *optional*, defaults to 1024): Dimension of the encoder layers and the pooler layer. num_hidden_layers (`int`, *optional*, defaults to 24): Number of hidden layers in the Transformer encoder. num_attention_heads (`int`, *optional*, defaults to 16): Number of attention heads for each attention layer in the Transformer encoder. intermediate_size (`int`, *optional*, defaults to 4096): Dimension of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder. hidden_act (`str` or `function`, *optional*, defaults to `"gelu"`): The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`, `"relu"`, `"selu"` and `"gelu_new"` are supported. hidden_dropout_prob (`float`, *optional*, defaults to 0.1): The dropout probability for all fully connected layers in the embeddings, encoder, and pooler. attention_probs_dropout_prob (`float`, *optional*, defaults to 0.1): The dropout ratio for the attention probabilities. max_position_embeddings (`int`, *optional*, defaults to 1024): The maximum sequence length that this model might ever be used with. Typically set this to something large just in case (e.g., 512 or 1024 or 2048). initializer_range (`float`, *optional*, defaults to 0.02): The standard deviation of the truncated_normal_initializer for initializing all weight matrices. layer_norm_eps (`float`, *optional*, defaults to 1e-12): The epsilon used by the layer normalization layers. scale_embedding (`bool`, *optional*, defaults to `True`): Scale embeddings by diving by sqrt(d_model). use_cache (`bool`, *optional*, defaults to `True`): Whether or not the model should return the last key/values attentions (not used by all models). Only relevant if `config.is_decoder=True`. layerdrop (`float`, *optional*, defaults to 0.0): Please refer to the paper about LayerDrop: https://arxiv.org/abs/1909.11556 for further details activation_dropout (`float`, *optional*, defaults to 0.0): The dropout ratio for activations inside the fully connected layer. pad_token_id (`int`, *optional*, defaults to 1): Padding token id. bos_token_id (`int`, *optional*, defaults to 0): Beginning of stream token id. eos_token_id (`int`, *optional*, defaults to 2): End of stream token id. Example: ```python >>> from transformers import BioGptModel, BioGptConfig >>> # Initializing a BioGPT microsoft/biogpt style configuration >>> configuration = BioGptConfig() >>> # Initializing a model from the microsoft/biogpt style configuration >>> model = BioGptModel(configuration) >>> # Accessing the model configuration >>> configuration = model.config ```""" model_type = "biogpt" def __init__( self, vocab_size=42384, hidden_size=1024, num_hidden_layers=24, num_attention_heads=16, intermediate_size=4096, hidden_act="gelu", hidden_dropout_prob=0.1, attention_probs_dropout_prob=0.1, max_position_embeddings=1024, initializer_range=0.02, layer_norm_eps=1e-12, scale_embedding=True, use_cache=True, layerdrop=0.0, activation_dropout=0.0, pad_token_id=1, bos_token_id=0, eos_token_id=2, **kwargs, ): self.vocab_size = vocab_size self.max_position_embeddings = max_position_embeddings self.hidden_size = hidden_size self.num_hidden_layers = num_hidden_layers self.num_attention_heads = num_attention_heads self.intermediate_size = intermediate_size self.hidden_act = hidden_act self.hidden_dropout_prob = hidden_dropout_prob self.attention_probs_dropout_prob = attention_probs_dropout_prob self.initializer_range = initializer_range self.layer_norm_eps = layer_norm_eps self.scale_embedding = scale_embedding self.use_cache = use_cache self.layerdrop = layerdrop self.activation_dropout = activation_dropout super().__init__(pad_token_id=pad_token_id, bos_token_id=bos_token_id, eos_token_id=eos_token_id, **kwargs)