# coding=utf-8 # Copyright 2023-present NAVER Corp, The Microsoft Research Asia LayoutLM Team Authors and the HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Bros model configuration""" from ...configuration_utils import PretrainedConfig from ...utils import logging logger = logging.get_logger(__name__) from ..deprecated._archive_maps import BROS_PRETRAINED_CONFIG_ARCHIVE_MAP # noqa: F401, E402 class BrosConfig(PretrainedConfig): r""" This is the configuration class to store the configuration of a [`BrosModel`] or a [`TFBrosModel`]. It is used to instantiate a Bros model according to the specified arguments, defining the model architecture. Instantiating a configuration with the defaults will yield a similar configuration to that of the Bros [jinho8345/bros-base-uncased](https://huggingface.co/jinho8345/bros-base-uncased) architecture. Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the documentation from [`PretrainedConfig`] for more information. Args: vocab_size (`int`, *optional*, defaults to 30522): Vocabulary size of the Bros model. Defines the number of different tokens that can be represented by the `inputs_ids` passed when calling [`BrosModel`] or [`TFBrosModel`]. hidden_size (`int`, *optional*, defaults to 768): Dimensionality of the encoder layers and the pooler layer. num_hidden_layers (`int`, *optional*, defaults to 12): Number of hidden layers in the Transformer encoder. num_attention_heads (`int`, *optional*, defaults to 12): Number of attention heads for each attention layer in the Transformer encoder. intermediate_size (`int`, *optional*, defaults to 3072): Dimensionality of the "intermediate" (often named feed-forward) layer in the Transformer encoder. hidden_act (`str` or `Callable`, *optional*, defaults to `"gelu"`): The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`, `"relu"`, `"silu"` and `"gelu_new"` are supported. hidden_dropout_prob (`float`, *optional*, defaults to 0.1): The dropout probability for all fully connected layers in the embeddings, encoder, and pooler. attention_probs_dropout_prob (`float`, *optional*, defaults to 0.1): The dropout ratio for the attention probabilities. max_position_embeddings (`int`, *optional*, defaults to 512): The maximum sequence length that this model might ever be used with. Typically set this to something large just in case (e.g., 512 or 1024 or 2048). type_vocab_size (`int`, *optional*, defaults to 2): The vocabulary size of the `token_type_ids` passed when calling [`BrosModel`] or [`TFBrosModel`]. initializer_range (`float`, *optional*, defaults to 0.02): The standard deviation of the truncated_normal_initializer for initializing all weight matrices. layer_norm_eps (`float`, *optional*, defaults to 1e-12): The epsilon used by the layer normalization layers. pad_token_id (`int`, *optional*, defaults to 0): The index of the padding token in the token vocabulary. dim_bbox (`int`, *optional*, defaults to 8): The dimension of the bounding box coordinates. (x0, y1, x1, y0, x1, y1, x0, y1) bbox_scale (`float`, *optional*, defaults to 100.0): The scale factor of the bounding box coordinates. n_relations (`int`, *optional*, defaults to 1): The number of relations for SpadeEE(entity extraction), SpadeEL(entity linking) head. classifier_dropout_prob (`float`, *optional*, defaults to 0.1): The dropout ratio for the classifier head. Examples: ```python >>> from transformers import BrosConfig, BrosModel >>> # Initializing a BROS jinho8345/bros-base-uncased style configuration >>> configuration = BrosConfig() >>> # Initializing a model from the jinho8345/bros-base-uncased style configuration >>> model = BrosModel(configuration) >>> # Accessing the model configuration >>> configuration = model.config ```""" model_type = "bros" def __init__( self, vocab_size=30522, hidden_size=768, num_hidden_layers=12, num_attention_heads=12, intermediate_size=3072, hidden_act="gelu", hidden_dropout_prob=0.1, attention_probs_dropout_prob=0.1, max_position_embeddings=512, type_vocab_size=2, initializer_range=0.02, layer_norm_eps=1e-12, pad_token_id=0, dim_bbox=8, bbox_scale=100.0, n_relations=1, classifier_dropout_prob=0.1, **kwargs, ): super().__init__( vocab_size=vocab_size, hidden_size=hidden_size, num_hidden_layers=num_hidden_layers, num_attention_heads=num_attention_heads, intermediate_size=intermediate_size, hidden_act=hidden_act, hidden_dropout_prob=hidden_dropout_prob, attention_probs_dropout_prob=attention_probs_dropout_prob, max_position_embeddings=max_position_embeddings, type_vocab_size=type_vocab_size, initializer_range=initializer_range, layer_norm_eps=layer_norm_eps, pad_token_id=pad_token_id, **kwargs, ) self.dim_bbox = dim_bbox self.bbox_scale = bbox_scale self.n_relations = n_relations self.dim_bbox_sinusoid_emb_2d = self.hidden_size // 4 self.dim_bbox_sinusoid_emb_1d = self.dim_bbox_sinusoid_emb_2d // self.dim_bbox self.dim_bbox_projection = self.hidden_size // self.num_attention_heads self.classifier_dropout_prob = classifier_dropout_prob