# coding=utf-8 # Copyright 2022 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ CvT model configuration""" from ...configuration_utils import PretrainedConfig from ...utils import logging logger = logging.get_logger(__name__) from ..deprecated._archive_maps import CVT_PRETRAINED_CONFIG_ARCHIVE_MAP # noqa: F401, E402 class CvtConfig(PretrainedConfig): r""" This is the configuration class to store the configuration of a [`CvtModel`]. It is used to instantiate a CvT model according to the specified arguments, defining the model architecture. Instantiating a configuration with the defaults will yield a similar configuration to that of the CvT [microsoft/cvt-13](https://huggingface.co/microsoft/cvt-13) architecture. Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the documentation from [`PretrainedConfig`] for more information. Args: num_channels (`int`, *optional*, defaults to 3): The number of input channels. patch_sizes (`List[int]`, *optional*, defaults to `[7, 3, 3]`): The kernel size of each encoder's patch embedding. patch_stride (`List[int]`, *optional*, defaults to `[4, 2, 2]`): The stride size of each encoder's patch embedding. patch_padding (`List[int]`, *optional*, defaults to `[2, 1, 1]`): The padding size of each encoder's patch embedding. embed_dim (`List[int]`, *optional*, defaults to `[64, 192, 384]`): Dimension of each of the encoder blocks. num_heads (`List[int]`, *optional*, defaults to `[1, 3, 6]`): Number of attention heads for each attention layer in each block of the Transformer encoder. depth (`List[int]`, *optional*, defaults to `[1, 2, 10]`): The number of layers in each encoder block. mlp_ratios (`List[float]`, *optional*, defaults to `[4.0, 4.0, 4.0, 4.0]`): Ratio of the size of the hidden layer compared to the size of the input layer of the Mix FFNs in the encoder blocks. attention_drop_rate (`List[float]`, *optional*, defaults to `[0.0, 0.0, 0.0]`): The dropout ratio for the attention probabilities. drop_rate (`List[float]`, *optional*, defaults to `[0.0, 0.0, 0.0]`): The dropout ratio for the patch embeddings probabilities. drop_path_rate (`List[float]`, *optional*, defaults to `[0.0, 0.0, 0.1]`): The dropout probability for stochastic depth, used in the blocks of the Transformer encoder. qkv_bias (`List[bool]`, *optional*, defaults to `[True, True, True]`): The bias bool for query, key and value in attentions cls_token (`List[bool]`, *optional*, defaults to `[False, False, True]`): Whether or not to add a classification token to the output of each of the last 3 stages. qkv_projection_method (`List[string]`, *optional*, defaults to ["dw_bn", "dw_bn", "dw_bn"]`): The projection method for query, key and value Default is depth-wise convolutions with batch norm. For Linear projection use "avg". kernel_qkv (`List[int]`, *optional*, defaults to `[3, 3, 3]`): The kernel size for query, key and value in attention layer padding_kv (`List[int]`, *optional*, defaults to `[1, 1, 1]`): The padding size for key and value in attention layer stride_kv (`List[int]`, *optional*, defaults to `[2, 2, 2]`): The stride size for key and value in attention layer padding_q (`List[int]`, *optional*, defaults to `[1, 1, 1]`): The padding size for query in attention layer stride_q (`List[int]`, *optional*, defaults to `[1, 1, 1]`): The stride size for query in attention layer initializer_range (`float`, *optional*, defaults to 0.02): The standard deviation of the truncated_normal_initializer for initializing all weight matrices. layer_norm_eps (`float`, *optional*, defaults to 1e-6): The epsilon used by the layer normalization layers. Example: ```python >>> from transformers import CvtConfig, CvtModel >>> # Initializing a Cvt msft/cvt style configuration >>> configuration = CvtConfig() >>> # Initializing a model (with random weights) from the msft/cvt style configuration >>> model = CvtModel(configuration) >>> # Accessing the model configuration >>> configuration = model.config ```""" model_type = "cvt" def __init__( self, num_channels=3, patch_sizes=[7, 3, 3], patch_stride=[4, 2, 2], patch_padding=[2, 1, 1], embed_dim=[64, 192, 384], num_heads=[1, 3, 6], depth=[1, 2, 10], mlp_ratio=[4.0, 4.0, 4.0], attention_drop_rate=[0.0, 0.0, 0.0], drop_rate=[0.0, 0.0, 0.0], drop_path_rate=[0.0, 0.0, 0.1], qkv_bias=[True, True, True], cls_token=[False, False, True], qkv_projection_method=["dw_bn", "dw_bn", "dw_bn"], kernel_qkv=[3, 3, 3], padding_kv=[1, 1, 1], stride_kv=[2, 2, 2], padding_q=[1, 1, 1], stride_q=[1, 1, 1], initializer_range=0.02, layer_norm_eps=1e-12, **kwargs, ): super().__init__(**kwargs) self.num_channels = num_channels self.patch_sizes = patch_sizes self.patch_stride = patch_stride self.patch_padding = patch_padding self.embed_dim = embed_dim self.num_heads = num_heads self.depth = depth self.mlp_ratio = mlp_ratio self.attention_drop_rate = attention_drop_rate self.drop_rate = drop_rate self.drop_path_rate = drop_path_rate self.qkv_bias = qkv_bias self.cls_token = cls_token self.qkv_projection_method = qkv_projection_method self.kernel_qkv = kernel_qkv self.padding_kv = padding_kv self.stride_kv = stride_kv self.padding_q = padding_q self.stride_q = stride_q self.initializer_range = initializer_range self.layer_norm_eps = layer_norm_eps