# coding=utf-8 # Copyright 2020 Microsoft and the Hugging Face Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ PyTorch DeBERTa model.""" from collections.abc import Sequence from typing import Optional, Tuple, Union import torch import torch.utils.checkpoint from torch import nn from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss from ...activations import ACT2FN from ...modeling_outputs import ( BaseModelOutput, MaskedLMOutput, QuestionAnsweringModelOutput, SequenceClassifierOutput, TokenClassifierOutput, ) from ...modeling_utils import PreTrainedModel from ...pytorch_utils import softmax_backward_data from ...utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, logging from .configuration_deberta import DebertaConfig logger = logging.get_logger(__name__) _CONFIG_FOR_DOC = "DebertaConfig" _CHECKPOINT_FOR_DOC = "microsoft/deberta-base" # Masked LM docstring _CHECKPOINT_FOR_MASKED_LM = "lsanochkin/deberta-large-feedback" _MASKED_LM_EXPECTED_OUTPUT = "' Paris'" _MASKED_LM_EXPECTED_LOSS = "0.54" # QuestionAnswering docstring _CHECKPOINT_FOR_QA = "Palak/microsoft_deberta-large_squad" _QA_EXPECTED_OUTPUT = "' a nice puppet'" _QA_EXPECTED_LOSS = 0.14 _QA_TARGET_START_INDEX = 12 _QA_TARGET_END_INDEX = 14 from ..deprecated._archive_maps import DEBERTA_PRETRAINED_MODEL_ARCHIVE_LIST # noqa: F401, E402 class ContextPooler(nn.Module): def __init__(self, config): super().__init__() self.dense = nn.Linear(config.pooler_hidden_size, config.pooler_hidden_size) self.dropout = StableDropout(config.pooler_dropout) self.config = config def forward(self, hidden_states): # We "pool" the model by simply taking the hidden state corresponding # to the first token. context_token = hidden_states[:, 0] context_token = self.dropout(context_token) pooled_output = self.dense(context_token) pooled_output = ACT2FN[self.config.pooler_hidden_act](pooled_output) return pooled_output @property def output_dim(self): return self.config.hidden_size class XSoftmax(torch.autograd.Function): """ Masked Softmax which is optimized for saving memory Args: input (`torch.tensor`): The input tensor that will apply softmax. mask (`torch.IntTensor`): The mask matrix where 0 indicate that element will be ignored in the softmax calculation. dim (int): The dimension that will apply softmax Example: ```python >>> import torch >>> from transformers.models.deberta.modeling_deberta import XSoftmax >>> # Make a tensor >>> x = torch.randn([4, 20, 100]) >>> # Create a mask >>> mask = (x > 0).int() >>> # Specify the dimension to apply softmax >>> dim = -1 >>> y = XSoftmax.apply(x, mask, dim) ```""" @staticmethod def forward(self, input, mask, dim): self.dim = dim rmask = ~(mask.to(torch.bool)) output = input.masked_fill(rmask, torch.tensor(torch.finfo(input.dtype).min)) output = torch.softmax(output, self.dim) output.masked_fill_(rmask, 0) self.save_for_backward(output) return output @staticmethod def backward(self, grad_output): (output,) = self.saved_tensors inputGrad = softmax_backward_data(self, grad_output, output, self.dim, output) return inputGrad, None, None @staticmethod def symbolic(g, self, mask, dim): import torch.onnx.symbolic_helper as sym_help from torch.onnx.symbolic_opset9 import masked_fill, softmax mask_cast_value = g.op("Cast", mask, to_i=sym_help.cast_pytorch_to_onnx["Long"]) r_mask = g.op( "Cast", g.op("Sub", g.op("Constant", value_t=torch.tensor(1, dtype=torch.int64)), mask_cast_value), to_i=sym_help.cast_pytorch_to_onnx["Bool"], ) output = masked_fill( g, self, r_mask, g.op("Constant", value_t=torch.tensor(torch.finfo(self.type().dtype()).min)) ) output = softmax(g, output, dim) return masked_fill(g, output, r_mask, g.op("Constant", value_t=torch.tensor(0, dtype=torch.bool))) class DropoutContext(object): def __init__(self): self.dropout = 0 self.mask = None self.scale = 1 self.reuse_mask = True def get_mask(input, local_context): if not isinstance(local_context, DropoutContext): dropout = local_context mask = None else: dropout = local_context.dropout dropout *= local_context.scale mask = local_context.mask if local_context.reuse_mask else None if dropout > 0 and mask is None: mask = (1 - torch.empty_like(input).bernoulli_(1 - dropout)).to(torch.bool) if isinstance(local_context, DropoutContext): if local_context.mask is None: local_context.mask = mask return mask, dropout class XDropout(torch.autograd.Function): """Optimized dropout function to save computation and memory by using mask operation instead of multiplication.""" @staticmethod def forward(ctx, input, local_ctx): mask, dropout = get_mask(input, local_ctx) ctx.scale = 1.0 / (1 - dropout) if dropout > 0: ctx.save_for_backward(mask) return input.masked_fill(mask, 0) * ctx.scale else: return input @staticmethod def backward(ctx, grad_output): if ctx.scale > 1: (mask,) = ctx.saved_tensors return grad_output.masked_fill(mask, 0) * ctx.scale, None else: return grad_output, None @staticmethod def symbolic(g: torch._C.Graph, input: torch._C.Value, local_ctx: Union[float, DropoutContext]) -> torch._C.Value: from torch.onnx import symbolic_opset12 dropout_p = local_ctx if isinstance(local_ctx, DropoutContext): dropout_p = local_ctx.dropout # StableDropout only calls this function when training. train = True # TODO: We should check if the opset_version being used to export # is > 12 here, but there's no good way to do that. As-is, if the # opset_version < 12, export will fail with a CheckerError. # Once https://github.com/pytorch/pytorch/issues/78391 is fixed, do something like: # if opset_version < 12: # return torch.onnx.symbolic_opset9.dropout(g, input, dropout_p, train) return symbolic_opset12.dropout(g, input, dropout_p, train) class StableDropout(nn.Module): """ Optimized dropout module for stabilizing the training Args: drop_prob (float): the dropout probabilities """ def __init__(self, drop_prob): super().__init__() self.drop_prob = drop_prob self.count = 0 self.context_stack = None def forward(self, x): """ Call the module Args: x (`torch.tensor`): The input tensor to apply dropout """ if self.training and self.drop_prob > 0: return XDropout.apply(x, self.get_context()) return x def clear_context(self): self.count = 0 self.context_stack = None def init_context(self, reuse_mask=True, scale=1): if self.context_stack is None: self.context_stack = [] self.count = 0 for c in self.context_stack: c.reuse_mask = reuse_mask c.scale = scale def get_context(self): if self.context_stack is not None: if self.count >= len(self.context_stack): self.context_stack.append(DropoutContext()) ctx = self.context_stack[self.count] ctx.dropout = self.drop_prob self.count += 1 return ctx else: return self.drop_prob class DebertaLayerNorm(nn.Module): """LayerNorm module in the TF style (epsilon inside the square root).""" def __init__(self, size, eps=1e-12): super().__init__() self.weight = nn.Parameter(torch.ones(size)) self.bias = nn.Parameter(torch.zeros(size)) self.variance_epsilon = eps def forward(self, hidden_states): input_type = hidden_states.dtype hidden_states = hidden_states.float() mean = hidden_states.mean(-1, keepdim=True) variance = (hidden_states - mean).pow(2).mean(-1, keepdim=True) hidden_states = (hidden_states - mean) / torch.sqrt(variance + self.variance_epsilon) hidden_states = hidden_states.to(input_type) y = self.weight * hidden_states + self.bias return y class DebertaSelfOutput(nn.Module): def __init__(self, config): super().__init__() self.dense = nn.Linear(config.hidden_size, config.hidden_size) self.LayerNorm = DebertaLayerNorm(config.hidden_size, config.layer_norm_eps) self.dropout = StableDropout(config.hidden_dropout_prob) def forward(self, hidden_states, input_tensor): hidden_states = self.dense(hidden_states) hidden_states = self.dropout(hidden_states) hidden_states = self.LayerNorm(hidden_states + input_tensor) return hidden_states class DebertaAttention(nn.Module): def __init__(self, config): super().__init__() self.self = DisentangledSelfAttention(config) self.output = DebertaSelfOutput(config) self.config = config def forward( self, hidden_states, attention_mask, output_attentions=False, query_states=None, relative_pos=None, rel_embeddings=None, ): self_output = self.self( hidden_states, attention_mask, output_attentions, query_states=query_states, relative_pos=relative_pos, rel_embeddings=rel_embeddings, ) if output_attentions: self_output, att_matrix = self_output if query_states is None: query_states = hidden_states attention_output = self.output(self_output, query_states) if output_attentions: return (attention_output, att_matrix) else: return attention_output # Copied from transformers.models.bert.modeling_bert.BertIntermediate with Bert->Deberta class DebertaIntermediate(nn.Module): def __init__(self, config): super().__init__() self.dense = nn.Linear(config.hidden_size, config.intermediate_size) if isinstance(config.hidden_act, str): self.intermediate_act_fn = ACT2FN[config.hidden_act] else: self.intermediate_act_fn = config.hidden_act def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: hidden_states = self.dense(hidden_states) hidden_states = self.intermediate_act_fn(hidden_states) return hidden_states class DebertaOutput(nn.Module): def __init__(self, config): super().__init__() self.dense = nn.Linear(config.intermediate_size, config.hidden_size) self.LayerNorm = DebertaLayerNorm(config.hidden_size, config.layer_norm_eps) self.dropout = StableDropout(config.hidden_dropout_prob) self.config = config def forward(self, hidden_states, input_tensor): hidden_states = self.dense(hidden_states) hidden_states = self.dropout(hidden_states) hidden_states = self.LayerNorm(hidden_states + input_tensor) return hidden_states class DebertaLayer(nn.Module): def __init__(self, config): super().__init__() self.attention = DebertaAttention(config) self.intermediate = DebertaIntermediate(config) self.output = DebertaOutput(config) def forward( self, hidden_states, attention_mask, query_states=None, relative_pos=None, rel_embeddings=None, output_attentions=False, ): attention_output = self.attention( hidden_states, attention_mask, output_attentions=output_attentions, query_states=query_states, relative_pos=relative_pos, rel_embeddings=rel_embeddings, ) if output_attentions: attention_output, att_matrix = attention_output intermediate_output = self.intermediate(attention_output) layer_output = self.output(intermediate_output, attention_output) if output_attentions: return (layer_output, att_matrix) else: return layer_output class DebertaEncoder(nn.Module): """Modified BertEncoder with relative position bias support""" def __init__(self, config): super().__init__() self.layer = nn.ModuleList([DebertaLayer(config) for _ in range(config.num_hidden_layers)]) self.relative_attention = getattr(config, "relative_attention", False) if self.relative_attention: self.max_relative_positions = getattr(config, "max_relative_positions", -1) if self.max_relative_positions < 1: self.max_relative_positions = config.max_position_embeddings self.rel_embeddings = nn.Embedding(self.max_relative_positions * 2, config.hidden_size) self.gradient_checkpointing = False def get_rel_embedding(self): rel_embeddings = self.rel_embeddings.weight if self.relative_attention else None return rel_embeddings def get_attention_mask(self, attention_mask): if attention_mask.dim() <= 2: extended_attention_mask = attention_mask.unsqueeze(1).unsqueeze(2) attention_mask = extended_attention_mask * extended_attention_mask.squeeze(-2).unsqueeze(-1) elif attention_mask.dim() == 3: attention_mask = attention_mask.unsqueeze(1) return attention_mask def get_rel_pos(self, hidden_states, query_states=None, relative_pos=None): if self.relative_attention and relative_pos is None: q = query_states.size(-2) if query_states is not None else hidden_states.size(-2) relative_pos = build_relative_position(q, hidden_states.size(-2), hidden_states.device) return relative_pos def forward( self, hidden_states, attention_mask, output_hidden_states=True, output_attentions=False, query_states=None, relative_pos=None, return_dict=True, ): attention_mask = self.get_attention_mask(attention_mask) relative_pos = self.get_rel_pos(hidden_states, query_states, relative_pos) all_hidden_states = () if output_hidden_states else None all_attentions = () if output_attentions else None if isinstance(hidden_states, Sequence): next_kv = hidden_states[0] else: next_kv = hidden_states rel_embeddings = self.get_rel_embedding() for i, layer_module in enumerate(self.layer): if output_hidden_states: all_hidden_states = all_hidden_states + (hidden_states,) if self.gradient_checkpointing and self.training: hidden_states = self._gradient_checkpointing_func( layer_module.__call__, next_kv, attention_mask, query_states, relative_pos, rel_embeddings, output_attentions, ) else: hidden_states = layer_module( next_kv, attention_mask, query_states=query_states, relative_pos=relative_pos, rel_embeddings=rel_embeddings, output_attentions=output_attentions, ) if output_attentions: hidden_states, att_m = hidden_states if query_states is not None: query_states = hidden_states if isinstance(hidden_states, Sequence): next_kv = hidden_states[i + 1] if i + 1 < len(self.layer) else None else: next_kv = hidden_states if output_attentions: all_attentions = all_attentions + (att_m,) if output_hidden_states: all_hidden_states = all_hidden_states + (hidden_states,) if not return_dict: return tuple(v for v in [hidden_states, all_hidden_states, all_attentions] if v is not None) return BaseModelOutput( last_hidden_state=hidden_states, hidden_states=all_hidden_states, attentions=all_attentions ) def build_relative_position(query_size, key_size, device): """ Build relative position according to the query and key We assume the absolute position of query \\(P_q\\) is range from (0, query_size) and the absolute position of key \\(P_k\\) is range from (0, key_size), The relative positions from query to key is \\(R_{q \\rightarrow k} = P_q - P_k\\) Args: query_size (int): the length of query key_size (int): the length of key Return: `torch.LongTensor`: A tensor with shape [1, query_size, key_size] """ q_ids = torch.arange(query_size, dtype=torch.long, device=device) k_ids = torch.arange(key_size, dtype=torch.long, device=device) rel_pos_ids = q_ids[:, None] - k_ids.view(1, -1).repeat(query_size, 1) rel_pos_ids = rel_pos_ids[:query_size, :] rel_pos_ids = rel_pos_ids.unsqueeze(0) return rel_pos_ids @torch.jit.script def c2p_dynamic_expand(c2p_pos, query_layer, relative_pos): return c2p_pos.expand([query_layer.size(0), query_layer.size(1), query_layer.size(2), relative_pos.size(-1)]) @torch.jit.script def p2c_dynamic_expand(c2p_pos, query_layer, key_layer): return c2p_pos.expand([query_layer.size(0), query_layer.size(1), key_layer.size(-2), key_layer.size(-2)]) @torch.jit.script def pos_dynamic_expand(pos_index, p2c_att, key_layer): return pos_index.expand(p2c_att.size()[:2] + (pos_index.size(-2), key_layer.size(-2))) class DisentangledSelfAttention(nn.Module): """ Disentangled self-attention module Parameters: config (`str`): A model config class instance with the configuration to build a new model. The schema is similar to *BertConfig*, for more details, please refer [`DebertaConfig`] """ def __init__(self, config): super().__init__() if config.hidden_size % config.num_attention_heads != 0: raise ValueError( f"The hidden size ({config.hidden_size}) is not a multiple of the number of attention " f"heads ({config.num_attention_heads})" ) self.num_attention_heads = config.num_attention_heads self.attention_head_size = int(config.hidden_size / config.num_attention_heads) self.all_head_size = self.num_attention_heads * self.attention_head_size self.in_proj = nn.Linear(config.hidden_size, self.all_head_size * 3, bias=False) self.q_bias = nn.Parameter(torch.zeros((self.all_head_size), dtype=torch.float)) self.v_bias = nn.Parameter(torch.zeros((self.all_head_size), dtype=torch.float)) self.pos_att_type = config.pos_att_type if config.pos_att_type is not None else [] self.relative_attention = getattr(config, "relative_attention", False) self.talking_head = getattr(config, "talking_head", False) if self.talking_head: self.head_logits_proj = nn.Linear(config.num_attention_heads, config.num_attention_heads, bias=False) self.head_weights_proj = nn.Linear(config.num_attention_heads, config.num_attention_heads, bias=False) if self.relative_attention: self.max_relative_positions = getattr(config, "max_relative_positions", -1) if self.max_relative_positions < 1: self.max_relative_positions = config.max_position_embeddings self.pos_dropout = StableDropout(config.hidden_dropout_prob) if "c2p" in self.pos_att_type: self.pos_proj = nn.Linear(config.hidden_size, self.all_head_size, bias=False) if "p2c" in self.pos_att_type: self.pos_q_proj = nn.Linear(config.hidden_size, self.all_head_size) self.dropout = StableDropout(config.attention_probs_dropout_prob) def transpose_for_scores(self, x): new_x_shape = x.size()[:-1] + (self.num_attention_heads, -1) x = x.view(new_x_shape) return x.permute(0, 2, 1, 3) def forward( self, hidden_states, attention_mask, output_attentions=False, query_states=None, relative_pos=None, rel_embeddings=None, ): """ Call the module Args: hidden_states (`torch.FloatTensor`): Input states to the module usually the output from previous layer, it will be the Q,K and V in *Attention(Q,K,V)* attention_mask (`torch.BoolTensor`): An attention mask matrix of shape [*B*, *N*, *N*] where *B* is the batch size, *N* is the maximum sequence length in which element [i,j] = *1* means the *i* th token in the input can attend to the *j* th token. output_attentions (`bool`, optional): Whether return the attention matrix. query_states (`torch.FloatTensor`, optional): The *Q* state in *Attention(Q,K,V)*. relative_pos (`torch.LongTensor`): The relative position encoding between the tokens in the sequence. It's of shape [*B*, *N*, *N*] with values ranging in [*-max_relative_positions*, *max_relative_positions*]. rel_embeddings (`torch.FloatTensor`): The embedding of relative distances. It's a tensor of shape [\\(2 \\times \\text{max_relative_positions}\\), *hidden_size*]. """ if query_states is None: qp = self.in_proj(hidden_states) # .split(self.all_head_size, dim=-1) query_layer, key_layer, value_layer = self.transpose_for_scores(qp).chunk(3, dim=-1) else: def linear(w, b, x): if b is not None: return torch.matmul(x, w.t()) + b.t() else: return torch.matmul(x, w.t()) # + b.t() ws = self.in_proj.weight.chunk(self.num_attention_heads * 3, dim=0) qkvw = [torch.cat([ws[i * 3 + k] for i in range(self.num_attention_heads)], dim=0) for k in range(3)] qkvb = [None] * 3 q = linear(qkvw[0], qkvb[0], query_states.to(dtype=qkvw[0].dtype)) k, v = [linear(qkvw[i], qkvb[i], hidden_states.to(dtype=qkvw[i].dtype)) for i in range(1, 3)] query_layer, key_layer, value_layer = [self.transpose_for_scores(x) for x in [q, k, v]] query_layer = query_layer + self.transpose_for_scores(self.q_bias[None, None, :]) value_layer = value_layer + self.transpose_for_scores(self.v_bias[None, None, :]) rel_att = None # Take the dot product between "query" and "key" to get the raw attention scores. scale_factor = 1 + len(self.pos_att_type) scale = torch.sqrt(torch.tensor(query_layer.size(-1), dtype=torch.float) * scale_factor) query_layer = query_layer / scale.to(dtype=query_layer.dtype) attention_scores = torch.matmul(query_layer, key_layer.transpose(-1, -2)) if self.relative_attention: rel_embeddings = self.pos_dropout(rel_embeddings) rel_att = self.disentangled_att_bias(query_layer, key_layer, relative_pos, rel_embeddings, scale_factor) if rel_att is not None: attention_scores = attention_scores + rel_att # bxhxlxd if self.talking_head: attention_scores = self.head_logits_proj(attention_scores.permute(0, 2, 3, 1)).permute(0, 3, 1, 2) attention_probs = XSoftmax.apply(attention_scores, attention_mask, -1) attention_probs = self.dropout(attention_probs) if self.talking_head: attention_probs = self.head_weights_proj(attention_probs.permute(0, 2, 3, 1)).permute(0, 3, 1, 2) context_layer = torch.matmul(attention_probs, value_layer) context_layer = context_layer.permute(0, 2, 1, 3).contiguous() new_context_layer_shape = context_layer.size()[:-2] + (-1,) context_layer = context_layer.view(new_context_layer_shape) if output_attentions: return (context_layer, attention_probs) else: return context_layer def disentangled_att_bias(self, query_layer, key_layer, relative_pos, rel_embeddings, scale_factor): if relative_pos is None: q = query_layer.size(-2) relative_pos = build_relative_position(q, key_layer.size(-2), query_layer.device) if relative_pos.dim() == 2: relative_pos = relative_pos.unsqueeze(0).unsqueeze(0) elif relative_pos.dim() == 3: relative_pos = relative_pos.unsqueeze(1) # bxhxqxk elif relative_pos.dim() != 4: raise ValueError(f"Relative position ids must be of dim 2 or 3 or 4. {relative_pos.dim()}") att_span = min(max(query_layer.size(-2), key_layer.size(-2)), self.max_relative_positions) relative_pos = relative_pos.long().to(query_layer.device) rel_embeddings = rel_embeddings[ self.max_relative_positions - att_span : self.max_relative_positions + att_span, : ].unsqueeze(0) score = 0 # content->position if "c2p" in self.pos_att_type: pos_key_layer = self.pos_proj(rel_embeddings) pos_key_layer = self.transpose_for_scores(pos_key_layer) c2p_att = torch.matmul(query_layer, pos_key_layer.transpose(-1, -2)) c2p_pos = torch.clamp(relative_pos + att_span, 0, att_span * 2 - 1) c2p_att = torch.gather(c2p_att, dim=-1, index=c2p_dynamic_expand(c2p_pos, query_layer, relative_pos)) score += c2p_att # position->content if "p2c" in self.pos_att_type: pos_query_layer = self.pos_q_proj(rel_embeddings) pos_query_layer = self.transpose_for_scores(pos_query_layer) pos_query_layer /= torch.sqrt(torch.tensor(pos_query_layer.size(-1), dtype=torch.float) * scale_factor) if query_layer.size(-2) != key_layer.size(-2): r_pos = build_relative_position(key_layer.size(-2), key_layer.size(-2), query_layer.device) else: r_pos = relative_pos p2c_pos = torch.clamp(-r_pos + att_span, 0, att_span * 2 - 1) p2c_att = torch.matmul(key_layer, pos_query_layer.transpose(-1, -2).to(dtype=key_layer.dtype)) p2c_att = torch.gather( p2c_att, dim=-1, index=p2c_dynamic_expand(p2c_pos, query_layer, key_layer) ).transpose(-1, -2) if query_layer.size(-2) != key_layer.size(-2): pos_index = relative_pos[:, :, :, 0].unsqueeze(-1) p2c_att = torch.gather(p2c_att, dim=-2, index=pos_dynamic_expand(pos_index, p2c_att, key_layer)) score += p2c_att return score class DebertaEmbeddings(nn.Module): """Construct the embeddings from word, position and token_type embeddings.""" def __init__(self, config): super().__init__() pad_token_id = getattr(config, "pad_token_id", 0) self.embedding_size = getattr(config, "embedding_size", config.hidden_size) self.word_embeddings = nn.Embedding(config.vocab_size, self.embedding_size, padding_idx=pad_token_id) self.position_biased_input = getattr(config, "position_biased_input", True) if not self.position_biased_input: self.position_embeddings = None else: self.position_embeddings = nn.Embedding(config.max_position_embeddings, self.embedding_size) if config.type_vocab_size > 0: self.token_type_embeddings = nn.Embedding(config.type_vocab_size, self.embedding_size) if self.embedding_size != config.hidden_size: self.embed_proj = nn.Linear(self.embedding_size, config.hidden_size, bias=False) self.LayerNorm = DebertaLayerNorm(config.hidden_size, config.layer_norm_eps) self.dropout = StableDropout(config.hidden_dropout_prob) self.config = config # position_ids (1, len position emb) is contiguous in memory and exported when serialized self.register_buffer( "position_ids", torch.arange(config.max_position_embeddings).expand((1, -1)), persistent=False ) def forward(self, input_ids=None, token_type_ids=None, position_ids=None, mask=None, inputs_embeds=None): if input_ids is not None: input_shape = input_ids.size() else: input_shape = inputs_embeds.size()[:-1] seq_length = input_shape[1] if position_ids is None: position_ids = self.position_ids[:, :seq_length] if token_type_ids is None: token_type_ids = torch.zeros(input_shape, dtype=torch.long, device=self.position_ids.device) if inputs_embeds is None: inputs_embeds = self.word_embeddings(input_ids) if self.position_embeddings is not None: position_embeddings = self.position_embeddings(position_ids.long()) else: position_embeddings = torch.zeros_like(inputs_embeds) embeddings = inputs_embeds if self.position_biased_input: embeddings += position_embeddings if self.config.type_vocab_size > 0: token_type_embeddings = self.token_type_embeddings(token_type_ids) embeddings += token_type_embeddings if self.embedding_size != self.config.hidden_size: embeddings = self.embed_proj(embeddings) embeddings = self.LayerNorm(embeddings) if mask is not None: if mask.dim() != embeddings.dim(): if mask.dim() == 4: mask = mask.squeeze(1).squeeze(1) mask = mask.unsqueeze(2) mask = mask.to(embeddings.dtype) embeddings = embeddings * mask embeddings = self.dropout(embeddings) return embeddings class DebertaPreTrainedModel(PreTrainedModel): """ An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained models. """ config_class = DebertaConfig base_model_prefix = "deberta" _keys_to_ignore_on_load_unexpected = ["position_embeddings"] supports_gradient_checkpointing = True def _init_weights(self, module): """Initialize the weights.""" if isinstance(module, nn.Linear): # Slightly different from the TF version which uses truncated_normal for initialization # cf https://github.com/pytorch/pytorch/pull/5617 module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) if module.bias is not None: module.bias.data.zero_() elif isinstance(module, nn.Embedding): module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) if module.padding_idx is not None: module.weight.data[module.padding_idx].zero_() DEBERTA_START_DOCSTRING = r""" The DeBERTa model was proposed in [DeBERTa: Decoding-enhanced BERT with Disentangled Attention](https://arxiv.org/abs/2006.03654) by Pengcheng He, Xiaodong Liu, Jianfeng Gao, Weizhu Chen. It's build on top of BERT/RoBERTa with two improvements, i.e. disentangled attention and enhanced mask decoder. With those two improvements, it out perform BERT/RoBERTa on a majority of tasks with 80GB pretraining data. This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior. Parameters: config ([`DebertaConfig`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. """ DEBERTA_INPUTS_DOCSTRING = r""" Args: input_ids (`torch.LongTensor` of shape `({0})`): Indices of input sequence tokens in the vocabulary. Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for details. [What are input IDs?](../glossary#input-ids) attention_mask (`torch.FloatTensor` of shape `({0})`, *optional*): Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. [What are attention masks?](../glossary#attention-mask) token_type_ids (`torch.LongTensor` of shape `({0})`, *optional*): Segment token indices to indicate first and second portions of the inputs. Indices are selected in `[0, 1]`: - 0 corresponds to a *sentence A* token, - 1 corresponds to a *sentence B* token. [What are token type IDs?](../glossary#token-type-ids) position_ids (`torch.LongTensor` of shape `({0})`, *optional*): Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0, config.max_position_embeddings - 1]`. [What are position IDs?](../glossary#position-ids) inputs_embeds (`torch.FloatTensor` of shape `({0}, hidden_size)`, *optional*): Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This is useful if you want more control over how to convert *input_ids* indices into associated vectors than the model's internal embedding lookup matrix. output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. """ @add_start_docstrings( "The bare DeBERTa Model transformer outputting raw hidden-states without any specific head on top.", DEBERTA_START_DOCSTRING, ) class DebertaModel(DebertaPreTrainedModel): def __init__(self, config): super().__init__(config) self.embeddings = DebertaEmbeddings(config) self.encoder = DebertaEncoder(config) self.z_steps = 0 self.config = config # Initialize weights and apply final processing self.post_init() def get_input_embeddings(self): return self.embeddings.word_embeddings def set_input_embeddings(self, new_embeddings): self.embeddings.word_embeddings = new_embeddings def _prune_heads(self, heads_to_prune): """ Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base class PreTrainedModel """ raise NotImplementedError("The prune function is not implemented in DeBERTa model.") @add_start_docstrings_to_model_forward(DEBERTA_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC, output_type=BaseModelOutput, config_class=_CONFIG_FOR_DOC, ) def forward( self, input_ids: Optional[torch.Tensor] = None, attention_mask: Optional[torch.Tensor] = None, token_type_ids: Optional[torch.Tensor] = None, position_ids: Optional[torch.Tensor] = None, inputs_embeds: Optional[torch.Tensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, BaseModelOutput]: output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.use_return_dict if input_ids is not None and inputs_embeds is not None: raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time") elif input_ids is not None: self.warn_if_padding_and_no_attention_mask(input_ids, attention_mask) input_shape = input_ids.size() elif inputs_embeds is not None: input_shape = inputs_embeds.size()[:-1] else: raise ValueError("You have to specify either input_ids or inputs_embeds") device = input_ids.device if input_ids is not None else inputs_embeds.device if attention_mask is None: attention_mask = torch.ones(input_shape, device=device) if token_type_ids is None: token_type_ids = torch.zeros(input_shape, dtype=torch.long, device=device) embedding_output = self.embeddings( input_ids=input_ids, token_type_ids=token_type_ids, position_ids=position_ids, mask=attention_mask, inputs_embeds=inputs_embeds, ) encoder_outputs = self.encoder( embedding_output, attention_mask, output_hidden_states=True, output_attentions=output_attentions, return_dict=return_dict, ) encoded_layers = encoder_outputs[1] if self.z_steps > 1: hidden_states = encoded_layers[-2] layers = [self.encoder.layer[-1] for _ in range(self.z_steps)] query_states = encoded_layers[-1] rel_embeddings = self.encoder.get_rel_embedding() attention_mask = self.encoder.get_attention_mask(attention_mask) rel_pos = self.encoder.get_rel_pos(embedding_output) for layer in layers[1:]: query_states = layer( hidden_states, attention_mask, output_attentions=False, query_states=query_states, relative_pos=rel_pos, rel_embeddings=rel_embeddings, ) encoded_layers.append(query_states) sequence_output = encoded_layers[-1] if not return_dict: return (sequence_output,) + encoder_outputs[(1 if output_hidden_states else 2) :] return BaseModelOutput( last_hidden_state=sequence_output, hidden_states=encoder_outputs.hidden_states if output_hidden_states else None, attentions=encoder_outputs.attentions, ) @add_start_docstrings("""DeBERTa Model with a `language modeling` head on top.""", DEBERTA_START_DOCSTRING) class DebertaForMaskedLM(DebertaPreTrainedModel): _tied_weights_keys = ["cls.predictions.decoder.weight", "cls.predictions.decoder.bias"] def __init__(self, config): super().__init__(config) self.deberta = DebertaModel(config) self.cls = DebertaOnlyMLMHead(config) # Initialize weights and apply final processing self.post_init() def get_output_embeddings(self): return self.cls.predictions.decoder def set_output_embeddings(self, new_embeddings): self.cls.predictions.decoder = new_embeddings @add_start_docstrings_to_model_forward(DEBERTA_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_MASKED_LM, output_type=MaskedLMOutput, config_class=_CONFIG_FOR_DOC, mask="[MASK]", expected_output=_MASKED_LM_EXPECTED_OUTPUT, expected_loss=_MASKED_LM_EXPECTED_LOSS, ) def forward( self, input_ids: Optional[torch.Tensor] = None, attention_mask: Optional[torch.Tensor] = None, token_type_ids: Optional[torch.Tensor] = None, position_ids: Optional[torch.Tensor] = None, inputs_embeds: Optional[torch.Tensor] = None, labels: Optional[torch.Tensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, MaskedLMOutput]: r""" labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): Labels for computing the masked language modeling loss. Indices should be in `[-100, 0, ..., config.vocab_size]` (see `input_ids` docstring) Tokens with indices set to `-100` are ignored (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]` """ return_dict = return_dict if return_dict is not None else self.config.use_return_dict outputs = self.deberta( input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, position_ids=position_ids, inputs_embeds=inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) sequence_output = outputs[0] prediction_scores = self.cls(sequence_output) masked_lm_loss = None if labels is not None: loss_fct = CrossEntropyLoss() # -100 index = padding token masked_lm_loss = loss_fct(prediction_scores.view(-1, self.config.vocab_size), labels.view(-1)) if not return_dict: output = (prediction_scores,) + outputs[1:] return ((masked_lm_loss,) + output) if masked_lm_loss is not None else output return MaskedLMOutput( loss=masked_lm_loss, logits=prediction_scores, hidden_states=outputs.hidden_states, attentions=outputs.attentions, ) class DebertaPredictionHeadTransform(nn.Module): def __init__(self, config): super().__init__() self.embedding_size = getattr(config, "embedding_size", config.hidden_size) self.dense = nn.Linear(config.hidden_size, self.embedding_size) if isinstance(config.hidden_act, str): self.transform_act_fn = ACT2FN[config.hidden_act] else: self.transform_act_fn = config.hidden_act self.LayerNorm = nn.LayerNorm(self.embedding_size, eps=config.layer_norm_eps) def forward(self, hidden_states): hidden_states = self.dense(hidden_states) hidden_states = self.transform_act_fn(hidden_states) hidden_states = self.LayerNorm(hidden_states) return hidden_states class DebertaLMPredictionHead(nn.Module): def __init__(self, config): super().__init__() self.transform = DebertaPredictionHeadTransform(config) self.embedding_size = getattr(config, "embedding_size", config.hidden_size) # The output weights are the same as the input embeddings, but there is # an output-only bias for each token. self.decoder = nn.Linear(self.embedding_size, config.vocab_size, bias=False) self.bias = nn.Parameter(torch.zeros(config.vocab_size)) # Need a link between the two variables so that the bias is correctly resized with `resize_token_embeddings` self.decoder.bias = self.bias def forward(self, hidden_states): hidden_states = self.transform(hidden_states) hidden_states = self.decoder(hidden_states) return hidden_states # copied from transformers.models.bert.BertOnlyMLMHead with bert -> deberta class DebertaOnlyMLMHead(nn.Module): def __init__(self, config): super().__init__() self.predictions = DebertaLMPredictionHead(config) def forward(self, sequence_output): prediction_scores = self.predictions(sequence_output) return prediction_scores @add_start_docstrings( """ DeBERTa Model transformer with a sequence classification/regression head on top (a linear layer on top of the pooled output) e.g. for GLUE tasks. """, DEBERTA_START_DOCSTRING, ) class DebertaForSequenceClassification(DebertaPreTrainedModel): def __init__(self, config): super().__init__(config) num_labels = getattr(config, "num_labels", 2) self.num_labels = num_labels self.deberta = DebertaModel(config) self.pooler = ContextPooler(config) output_dim = self.pooler.output_dim self.classifier = nn.Linear(output_dim, num_labels) drop_out = getattr(config, "cls_dropout", None) drop_out = self.config.hidden_dropout_prob if drop_out is None else drop_out self.dropout = StableDropout(drop_out) # Initialize weights and apply final processing self.post_init() def get_input_embeddings(self): return self.deberta.get_input_embeddings() def set_input_embeddings(self, new_embeddings): self.deberta.set_input_embeddings(new_embeddings) @add_start_docstrings_to_model_forward(DEBERTA_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC, output_type=SequenceClassifierOutput, config_class=_CONFIG_FOR_DOC, ) def forward( self, input_ids: Optional[torch.Tensor] = None, attention_mask: Optional[torch.Tensor] = None, token_type_ids: Optional[torch.Tensor] = None, position_ids: Optional[torch.Tensor] = None, inputs_embeds: Optional[torch.Tensor] = None, labels: Optional[torch.Tensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, SequenceClassifierOutput]: r""" labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*): Labels for computing the sequence classification/regression loss. Indices should be in `[0, ..., config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If `config.num_labels > 1` a classification loss is computed (Cross-Entropy). """ return_dict = return_dict if return_dict is not None else self.config.use_return_dict outputs = self.deberta( input_ids, token_type_ids=token_type_ids, attention_mask=attention_mask, position_ids=position_ids, inputs_embeds=inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) encoder_layer = outputs[0] pooled_output = self.pooler(encoder_layer) pooled_output = self.dropout(pooled_output) logits = self.classifier(pooled_output) loss = None if labels is not None: if self.config.problem_type is None: if self.num_labels == 1: # regression task loss_fn = nn.MSELoss() logits = logits.view(-1).to(labels.dtype) loss = loss_fn(logits, labels.view(-1)) elif labels.dim() == 1 or labels.size(-1) == 1: label_index = (labels >= 0).nonzero() labels = labels.long() if label_index.size(0) > 0: labeled_logits = torch.gather( logits, 0, label_index.expand(label_index.size(0), logits.size(1)) ) labels = torch.gather(labels, 0, label_index.view(-1)) loss_fct = CrossEntropyLoss() loss = loss_fct(labeled_logits.view(-1, self.num_labels).float(), labels.view(-1)) else: loss = torch.tensor(0).to(logits) else: log_softmax = nn.LogSoftmax(-1) loss = -((log_softmax(logits) * labels).sum(-1)).mean() elif self.config.problem_type == "regression": loss_fct = MSELoss() if self.num_labels == 1: loss = loss_fct(logits.squeeze(), labels.squeeze()) else: loss = loss_fct(logits, labels) elif self.config.problem_type == "single_label_classification": loss_fct = CrossEntropyLoss() loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1)) elif self.config.problem_type == "multi_label_classification": loss_fct = BCEWithLogitsLoss() loss = loss_fct(logits, labels) if not return_dict: output = (logits,) + outputs[1:] return ((loss,) + output) if loss is not None else output return SequenceClassifierOutput( loss=loss, logits=logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions ) @add_start_docstrings( """ DeBERTa Model with a token classification head on top (a linear layer on top of the hidden-states output) e.g. for Named-Entity-Recognition (NER) tasks. """, DEBERTA_START_DOCSTRING, ) class DebertaForTokenClassification(DebertaPreTrainedModel): def __init__(self, config): super().__init__(config) self.num_labels = config.num_labels self.deberta = DebertaModel(config) self.dropout = nn.Dropout(config.hidden_dropout_prob) self.classifier = nn.Linear(config.hidden_size, config.num_labels) # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(DEBERTA_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC, output_type=TokenClassifierOutput, config_class=_CONFIG_FOR_DOC, ) def forward( self, input_ids: Optional[torch.Tensor] = None, attention_mask: Optional[torch.Tensor] = None, token_type_ids: Optional[torch.Tensor] = None, position_ids: Optional[torch.Tensor] = None, inputs_embeds: Optional[torch.Tensor] = None, labels: Optional[torch.Tensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, TokenClassifierOutput]: r""" labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): Labels for computing the token classification loss. Indices should be in `[0, ..., config.num_labels - 1]`. """ return_dict = return_dict if return_dict is not None else self.config.use_return_dict outputs = self.deberta( input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, position_ids=position_ids, inputs_embeds=inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) sequence_output = outputs[0] sequence_output = self.dropout(sequence_output) logits = self.classifier(sequence_output) loss = None if labels is not None: loss_fct = CrossEntropyLoss() loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1)) if not return_dict: output = (logits,) + outputs[1:] return ((loss,) + output) if loss is not None else output return TokenClassifierOutput( loss=loss, logits=logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions ) @add_start_docstrings( """ DeBERTa Model with a span classification head on top for extractive question-answering tasks like SQuAD (a linear layers on top of the hidden-states output to compute `span start logits` and `span end logits`). """, DEBERTA_START_DOCSTRING, ) class DebertaForQuestionAnswering(DebertaPreTrainedModel): def __init__(self, config): super().__init__(config) self.num_labels = config.num_labels self.deberta = DebertaModel(config) self.qa_outputs = nn.Linear(config.hidden_size, config.num_labels) # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(DEBERTA_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_QA, output_type=QuestionAnsweringModelOutput, config_class=_CONFIG_FOR_DOC, expected_output=_QA_EXPECTED_OUTPUT, expected_loss=_QA_EXPECTED_LOSS, qa_target_start_index=_QA_TARGET_START_INDEX, qa_target_end_index=_QA_TARGET_END_INDEX, ) def forward( self, input_ids: Optional[torch.Tensor] = None, attention_mask: Optional[torch.Tensor] = None, token_type_ids: Optional[torch.Tensor] = None, position_ids: Optional[torch.Tensor] = None, inputs_embeds: Optional[torch.Tensor] = None, start_positions: Optional[torch.Tensor] = None, end_positions: Optional[torch.Tensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, QuestionAnsweringModelOutput]: r""" start_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*): Labels for position (index) of the start of the labelled span for computing the token classification loss. Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence are not taken into account for computing the loss. end_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*): Labels for position (index) of the end of the labelled span for computing the token classification loss. Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence are not taken into account for computing the loss. """ return_dict = return_dict if return_dict is not None else self.config.use_return_dict outputs = self.deberta( input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, position_ids=position_ids, inputs_embeds=inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) sequence_output = outputs[0] logits = self.qa_outputs(sequence_output) start_logits, end_logits = logits.split(1, dim=-1) start_logits = start_logits.squeeze(-1).contiguous() end_logits = end_logits.squeeze(-1).contiguous() total_loss = None if start_positions is not None and end_positions is not None: # If we are on multi-GPU, split add a dimension if len(start_positions.size()) > 1: start_positions = start_positions.squeeze(-1) if len(end_positions.size()) > 1: end_positions = end_positions.squeeze(-1) # sometimes the start/end positions are outside our model inputs, we ignore these terms ignored_index = start_logits.size(1) start_positions = start_positions.clamp(0, ignored_index) end_positions = end_positions.clamp(0, ignored_index) loss_fct = CrossEntropyLoss(ignore_index=ignored_index) start_loss = loss_fct(start_logits, start_positions) end_loss = loss_fct(end_logits, end_positions) total_loss = (start_loss + end_loss) / 2 if not return_dict: output = (start_logits, end_logits) + outputs[1:] return ((total_loss,) + output) if total_loss is not None else output return QuestionAnsweringModelOutput( loss=total_loss, start_logits=start_logits, end_logits=end_logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions, )