# coding=utf-8 # Copyright 2022 Intel Labs, OpenMMLab and The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ PyTorch DPT (Dense Prediction Transformers) model. This implementation is heavily inspired by OpenMMLab's implementation, found here: https://github.com/open-mmlab/mmsegmentation/blob/master/mmseg/models/decode_heads/dpt_head.py. """ import collections.abc import math from dataclasses import dataclass from typing import List, Optional, Set, Tuple, Union import torch import torch.utils.checkpoint from torch import nn from torch.nn import CrossEntropyLoss from ...activations import ACT2FN from ...file_utils import ( add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, replace_return_docstrings, ) from ...modeling_outputs import BaseModelOutput, DepthEstimatorOutput, SemanticSegmenterOutput from ...modeling_utils import PreTrainedModel from ...pytorch_utils import find_pruneable_heads_and_indices, prune_linear_layer from ...utils import ModelOutput, logging from ...utils.backbone_utils import load_backbone from .configuration_dpt import DPTConfig logger = logging.get_logger(__name__) # General docstring _CONFIG_FOR_DOC = "DPTConfig" # Base docstring _CHECKPOINT_FOR_DOC = "Intel/dpt-large" _EXPECTED_OUTPUT_SHAPE = [1, 577, 1024] from ..deprecated._archive_maps import DPT_PRETRAINED_MODEL_ARCHIVE_LIST # noqa: F401, E402 @dataclass class BaseModelOutputWithIntermediateActivations(ModelOutput): """ Base class for model's outputs that also contains intermediate activations that can be used at later stages. Useful in the context of Vision models.: Args: last_hidden_state (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`): Sequence of hidden-states at the output of the last layer of the model. intermediate_activations (`tuple(torch.FloatTensor)`, *optional*): Intermediate activations that can be used to compute hidden states of the model at various layers. """ last_hidden_states: torch.FloatTensor = None intermediate_activations: Optional[Tuple[torch.FloatTensor, ...]] = None @dataclass class BaseModelOutputWithPoolingAndIntermediateActivations(ModelOutput): """ Base class for model's outputs that also contains a pooling of the last hidden states as well as intermediate activations that can be used by the model at later stages. Args: last_hidden_state (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`): Sequence of hidden-states at the output of the last layer of the model. pooler_output (`torch.FloatTensor` of shape `(batch_size, hidden_size)`): Last layer hidden-state of the first token of the sequence (classification token) after further processing through the layers used for the auxiliary pretraining task. E.g. for BERT-family of models, this returns the classification token after processing through a linear layer and a tanh activation function. The linear layer weights are trained from the next sentence prediction (classification) objective during pretraining. hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, + one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`. Hidden-states of the model at the output of each layer plus the optional initial embedding outputs. attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, sequence_length)`. Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads. intermediate_activations (`tuple(torch.FloatTensor)`, *optional*): Intermediate activations that can be used to compute hidden states of the model at various layers. """ last_hidden_state: torch.FloatTensor = None pooler_output: torch.FloatTensor = None hidden_states: Optional[Tuple[torch.FloatTensor, ...]] = None attentions: Optional[Tuple[torch.FloatTensor, ...]] = None intermediate_activations: Optional[Tuple[torch.FloatTensor, ...]] = None class DPTViTHybridEmbeddings(nn.Module): """ This class turns `pixel_values` of shape `(batch_size, num_channels, height, width)` into the initial `hidden_states` (patch embeddings) of shape `(batch_size, seq_length, hidden_size)` to be consumed by a Transformer. """ def __init__(self, config, feature_size=None): super().__init__() image_size, patch_size = config.image_size, config.patch_size num_channels, hidden_size = config.num_channels, config.hidden_size image_size = image_size if isinstance(image_size, collections.abc.Iterable) else (image_size, image_size) patch_size = patch_size if isinstance(patch_size, collections.abc.Iterable) else (patch_size, patch_size) num_patches = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) self.backbone = load_backbone(config) feature_dim = self.backbone.channels[-1] if len(self.backbone.channels) != 3: raise ValueError(f"Expected backbone to have 3 output features, got {len(self.backbone.channels)}") self.residual_feature_map_index = [0, 1] # Always take the output of the first and second backbone stage if feature_size is None: feat_map_shape = config.backbone_featmap_shape feature_size = feat_map_shape[-2:] feature_dim = feat_map_shape[1] else: feature_size = ( feature_size if isinstance(feature_size, collections.abc.Iterable) else (feature_size, feature_size) ) feature_dim = self.backbone.channels[-1] self.image_size = image_size self.patch_size = patch_size[0] self.num_channels = num_channels self.projection = nn.Conv2d(feature_dim, hidden_size, kernel_size=1) self.cls_token = nn.Parameter(torch.zeros(1, 1, config.hidden_size)) self.position_embeddings = nn.Parameter(torch.zeros(1, num_patches + 1, config.hidden_size)) def _resize_pos_embed(self, posemb, grid_size_height, grid_size_width, start_index=1): posemb_tok = posemb[:, :start_index] posemb_grid = posemb[0, start_index:] old_grid_size = int(math.sqrt(len(posemb_grid))) posemb_grid = posemb_grid.reshape(1, old_grid_size, old_grid_size, -1).permute(0, 3, 1, 2) posemb_grid = nn.functional.interpolate(posemb_grid, size=(grid_size_height, grid_size_width), mode="bilinear") posemb_grid = posemb_grid.permute(0, 2, 3, 1).reshape(1, grid_size_height * grid_size_width, -1) posemb = torch.cat([posemb_tok, posemb_grid], dim=1) return posemb def forward( self, pixel_values: torch.Tensor, interpolate_pos_encoding: bool = False, return_dict: bool = False ) -> torch.Tensor: batch_size, num_channels, height, width = pixel_values.shape if num_channels != self.num_channels: raise ValueError( "Make sure that the channel dimension of the pixel values match with the one set in the configuration." ) if not interpolate_pos_encoding: if height != self.image_size[0] or width != self.image_size[1]: raise ValueError( f"Input image size ({height}*{width}) doesn't match model" f" ({self.image_size[0]}*{self.image_size[1]})." ) position_embeddings = self._resize_pos_embed( self.position_embeddings, height // self.patch_size, width // self.patch_size ) backbone_output = self.backbone(pixel_values) features = backbone_output.feature_maps[-1] # Retrieve also the intermediate activations to use them at later stages output_hidden_states = [backbone_output.feature_maps[index] for index in self.residual_feature_map_index] embeddings = self.projection(features).flatten(2).transpose(1, 2) cls_tokens = self.cls_token.expand(batch_size, -1, -1) embeddings = torch.cat((cls_tokens, embeddings), dim=1) # add positional encoding to each token embeddings = embeddings + position_embeddings if not return_dict: return (embeddings, output_hidden_states) # Return hidden states and intermediate activations return BaseModelOutputWithIntermediateActivations( last_hidden_states=embeddings, intermediate_activations=output_hidden_states, ) class DPTViTEmbeddings(nn.Module): """ Construct the CLS token, position and patch embeddings. """ def __init__(self, config): super().__init__() self.cls_token = nn.Parameter(torch.zeros(1, 1, config.hidden_size)) self.patch_embeddings = DPTViTPatchEmbeddings(config) num_patches = self.patch_embeddings.num_patches self.position_embeddings = nn.Parameter(torch.zeros(1, num_patches + 1, config.hidden_size)) self.dropout = nn.Dropout(config.hidden_dropout_prob) self.config = config def _resize_pos_embed(self, posemb, grid_size_height, grid_size_width, start_index=1): posemb_tok = posemb[:, :start_index] posemb_grid = posemb[0, start_index:] old_grid_size = int(math.sqrt(len(posemb_grid))) posemb_grid = posemb_grid.reshape(1, old_grid_size, old_grid_size, -1).permute(0, 3, 1, 2) posemb_grid = nn.functional.interpolate(posemb_grid, size=(grid_size_height, grid_size_width), mode="bilinear") posemb_grid = posemb_grid.permute(0, 2, 3, 1).reshape(1, grid_size_height * grid_size_width, -1) posemb = torch.cat([posemb_tok, posemb_grid], dim=1) return posemb def forward(self, pixel_values, return_dict=False): batch_size, num_channels, height, width = pixel_values.shape # possibly interpolate position encodings to handle varying image sizes patch_size = self.config.patch_size position_embeddings = self._resize_pos_embed( self.position_embeddings, height // patch_size, width // patch_size ) embeddings = self.patch_embeddings(pixel_values) batch_size, seq_len, _ = embeddings.size() # add the [CLS] token to the embedded patch tokens cls_tokens = self.cls_token.expand(batch_size, -1, -1) embeddings = torch.cat((cls_tokens, embeddings), dim=1) # add positional encoding to each token embeddings = embeddings + position_embeddings embeddings = self.dropout(embeddings) if not return_dict: return (embeddings,) return BaseModelOutputWithIntermediateActivations(last_hidden_states=embeddings) class DPTViTPatchEmbeddings(nn.Module): """ Image to Patch Embedding. """ def __init__(self, config): super().__init__() image_size, patch_size = config.image_size, config.patch_size num_channels, hidden_size = config.num_channels, config.hidden_size image_size = image_size if isinstance(image_size, collections.abc.Iterable) else (image_size, image_size) patch_size = patch_size if isinstance(patch_size, collections.abc.Iterable) else (patch_size, patch_size) num_patches = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) self.image_size = image_size self.patch_size = patch_size self.num_channels = num_channels self.num_patches = num_patches self.projection = nn.Conv2d(num_channels, hidden_size, kernel_size=patch_size, stride=patch_size) def forward(self, pixel_values): batch_size, num_channels, height, width = pixel_values.shape if num_channels != self.num_channels: raise ValueError( "Make sure that the channel dimension of the pixel values match with the one set in the configuration." ) embeddings = self.projection(pixel_values).flatten(2).transpose(1, 2) return embeddings # Copied from transformers.models.vit.modeling_vit.ViTSelfAttention with ViT->DPT class DPTViTSelfAttention(nn.Module): def __init__(self, config: DPTConfig) -> None: super().__init__() if config.hidden_size % config.num_attention_heads != 0 and not hasattr(config, "embedding_size"): raise ValueError( f"The hidden size {config.hidden_size,} is not a multiple of the number of attention " f"heads {config.num_attention_heads}." ) self.num_attention_heads = config.num_attention_heads self.attention_head_size = int(config.hidden_size / config.num_attention_heads) self.all_head_size = self.num_attention_heads * self.attention_head_size self.query = nn.Linear(config.hidden_size, self.all_head_size, bias=config.qkv_bias) self.key = nn.Linear(config.hidden_size, self.all_head_size, bias=config.qkv_bias) self.value = nn.Linear(config.hidden_size, self.all_head_size, bias=config.qkv_bias) self.dropout = nn.Dropout(config.attention_probs_dropout_prob) def transpose_for_scores(self, x: torch.Tensor) -> torch.Tensor: new_x_shape = x.size()[:-1] + (self.num_attention_heads, self.attention_head_size) x = x.view(new_x_shape) return x.permute(0, 2, 1, 3) def forward( self, hidden_states, head_mask: Optional[torch.Tensor] = None, output_attentions: bool = False ) -> Union[Tuple[torch.Tensor, torch.Tensor], Tuple[torch.Tensor]]: mixed_query_layer = self.query(hidden_states) key_layer = self.transpose_for_scores(self.key(hidden_states)) value_layer = self.transpose_for_scores(self.value(hidden_states)) query_layer = self.transpose_for_scores(mixed_query_layer) # Take the dot product between "query" and "key" to get the raw attention scores. attention_scores = torch.matmul(query_layer, key_layer.transpose(-1, -2)) attention_scores = attention_scores / math.sqrt(self.attention_head_size) # Normalize the attention scores to probabilities. attention_probs = nn.functional.softmax(attention_scores, dim=-1) # This is actually dropping out entire tokens to attend to, which might # seem a bit unusual, but is taken from the original Transformer paper. attention_probs = self.dropout(attention_probs) # Mask heads if we want to if head_mask is not None: attention_probs = attention_probs * head_mask context_layer = torch.matmul(attention_probs, value_layer) context_layer = context_layer.permute(0, 2, 1, 3).contiguous() new_context_layer_shape = context_layer.size()[:-2] + (self.all_head_size,) context_layer = context_layer.view(new_context_layer_shape) outputs = (context_layer, attention_probs) if output_attentions else (context_layer,) return outputs # Copied from transformers.models.vit.modeling_vit.ViTSelfOutput with ViT->DPT class DPTViTSelfOutput(nn.Module): """ The residual connection is defined in DPTLayer instead of here (as is the case with other models), due to the layernorm applied before each block. """ def __init__(self, config: DPTConfig) -> None: super().__init__() self.dense = nn.Linear(config.hidden_size, config.hidden_size) self.dropout = nn.Dropout(config.hidden_dropout_prob) def forward(self, hidden_states: torch.Tensor, input_tensor: torch.Tensor) -> torch.Tensor: hidden_states = self.dense(hidden_states) hidden_states = self.dropout(hidden_states) return hidden_states class DPTViTAttention(nn.Module): def __init__(self, config: DPTConfig) -> None: super().__init__() self.attention = DPTViTSelfAttention(config) self.output = DPTViTSelfOutput(config) self.pruned_heads = set() # Copied from transformers.models.vit.modeling_vit.ViTAttention.prune_heads def prune_heads(self, heads: Set[int]) -> None: if len(heads) == 0: return heads, index = find_pruneable_heads_and_indices( heads, self.attention.num_attention_heads, self.attention.attention_head_size, self.pruned_heads ) # Prune linear layers self.attention.query = prune_linear_layer(self.attention.query, index) self.attention.key = prune_linear_layer(self.attention.key, index) self.attention.value = prune_linear_layer(self.attention.value, index) self.output.dense = prune_linear_layer(self.output.dense, index, dim=1) # Update hyper params and store pruned heads self.attention.num_attention_heads = self.attention.num_attention_heads - len(heads) self.attention.all_head_size = self.attention.attention_head_size * self.attention.num_attention_heads self.pruned_heads = self.pruned_heads.union(heads) # Copied from transformers.models.vit.modeling_vit.ViTAttention.forward def forward( self, hidden_states: torch.Tensor, head_mask: Optional[torch.Tensor] = None, output_attentions: bool = False, ) -> Union[Tuple[torch.Tensor, torch.Tensor], Tuple[torch.Tensor]]: self_outputs = self.attention(hidden_states, head_mask, output_attentions) attention_output = self.output(self_outputs[0], hidden_states) outputs = (attention_output,) + self_outputs[1:] # add attentions if we output them return outputs # Copied from transformers.models.vit.modeling_vit.ViTIntermediate with ViT->DPT class DPTViTIntermediate(nn.Module): def __init__(self, config: DPTConfig) -> None: super().__init__() self.dense = nn.Linear(config.hidden_size, config.intermediate_size) if isinstance(config.hidden_act, str): self.intermediate_act_fn = ACT2FN[config.hidden_act] else: self.intermediate_act_fn = config.hidden_act def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: hidden_states = self.dense(hidden_states) hidden_states = self.intermediate_act_fn(hidden_states) return hidden_states # Copied from transformers.models.vit.modeling_vit.ViTOutput with ViT->DPT class DPTViTOutput(nn.Module): def __init__(self, config: DPTConfig) -> None: super().__init__() self.dense = nn.Linear(config.intermediate_size, config.hidden_size) self.dropout = nn.Dropout(config.hidden_dropout_prob) def forward(self, hidden_states: torch.Tensor, input_tensor: torch.Tensor) -> torch.Tensor: hidden_states = self.dense(hidden_states) hidden_states = self.dropout(hidden_states) hidden_states = hidden_states + input_tensor return hidden_states # copied from transformers.models.vit.modeling_vit.ViTLayer with ViTConfig->DPTConfig, ViTAttention->DPTViTAttention, ViTIntermediate->DPTViTIntermediate, ViTOutput->DPTViTOutput class DPTViTLayer(nn.Module): """This corresponds to the Block class in the timm implementation.""" def __init__(self, config: DPTConfig) -> None: super().__init__() self.chunk_size_feed_forward = config.chunk_size_feed_forward self.seq_len_dim = 1 self.attention = DPTViTAttention(config) self.intermediate = DPTViTIntermediate(config) self.output = DPTViTOutput(config) self.layernorm_before = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) self.layernorm_after = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) def forward( self, hidden_states: torch.Tensor, head_mask: Optional[torch.Tensor] = None, output_attentions: bool = False, ) -> Union[Tuple[torch.Tensor, torch.Tensor], Tuple[torch.Tensor]]: self_attention_outputs = self.attention( self.layernorm_before(hidden_states), # in ViT, layernorm is applied before self-attention head_mask, output_attentions=output_attentions, ) attention_output = self_attention_outputs[0] outputs = self_attention_outputs[1:] # add self attentions if we output attention weights # first residual connection hidden_states = attention_output + hidden_states # in ViT, layernorm is also applied after self-attention layer_output = self.layernorm_after(hidden_states) layer_output = self.intermediate(layer_output) # second residual connection is done here layer_output = self.output(layer_output, hidden_states) outputs = (layer_output,) + outputs return outputs # copied from transformers.models.vit.modeling_vit.ViTEncoder with ViTConfig -> DPTConfig, ViTLayer->DPTViTLayer class DPTViTEncoder(nn.Module): def __init__(self, config: DPTConfig) -> None: super().__init__() self.config = config self.layer = nn.ModuleList([DPTViTLayer(config) for _ in range(config.num_hidden_layers)]) self.gradient_checkpointing = False def forward( self, hidden_states: torch.Tensor, head_mask: Optional[torch.Tensor] = None, output_attentions: bool = False, output_hidden_states: bool = False, return_dict: bool = True, ) -> Union[tuple, BaseModelOutput]: all_hidden_states = () if output_hidden_states else None all_self_attentions = () if output_attentions else None for i, layer_module in enumerate(self.layer): if output_hidden_states: all_hidden_states = all_hidden_states + (hidden_states,) layer_head_mask = head_mask[i] if head_mask is not None else None if self.gradient_checkpointing and self.training: layer_outputs = self._gradient_checkpointing_func( layer_module.__call__, hidden_states, layer_head_mask, output_attentions, ) else: layer_outputs = layer_module(hidden_states, layer_head_mask, output_attentions) hidden_states = layer_outputs[0] if output_attentions: all_self_attentions = all_self_attentions + (layer_outputs[1],) if output_hidden_states: all_hidden_states = all_hidden_states + (hidden_states,) if not return_dict: return tuple(v for v in [hidden_states, all_hidden_states, all_self_attentions] if v is not None) return BaseModelOutput( last_hidden_state=hidden_states, hidden_states=all_hidden_states, attentions=all_self_attentions, ) class DPTReassembleStage(nn.Module): """ This class reassembles the hidden states of the backbone into image-like feature representations at various resolutions. This happens in 3 stages: 1. Map the N + 1 tokens to a set of N tokens, by taking into account the readout ([CLS]) token according to `config.readout_type`. 2. Project the channel dimension of the hidden states according to `config.neck_hidden_sizes`. 3. Resizing the spatial dimensions (height, width). Args: config (`[DPTConfig]`): Model configuration class defining the model architecture. """ def __init__(self, config): super().__init__() self.config = config self.layers = nn.ModuleList() if config.is_hybrid: self._init_reassemble_dpt_hybrid(config) else: self._init_reassemble_dpt(config) self.neck_ignore_stages = config.neck_ignore_stages def _init_reassemble_dpt_hybrid(self, config): r""" " For DPT-Hybrid the first 2 reassemble layers are set to `nn.Identity()`, please check the official implementation: https://github.com/isl-org/DPT/blob/f43ef9e08d70a752195028a51be5e1aff227b913/dpt/vit.py#L438 for more details. """ for i, factor in zip(range(len(config.neck_hidden_sizes)), config.reassemble_factors): if i <= 1: self.layers.append(nn.Identity()) elif i > 1: self.layers.append(DPTReassembleLayer(config, channels=config.neck_hidden_sizes[i], factor=factor)) if config.readout_type != "project": raise ValueError(f"Readout type {config.readout_type} is not supported for DPT-Hybrid.") # When using DPT-Hybrid the readout type is set to "project". The sanity check is done on the config file self.readout_projects = nn.ModuleList() hidden_size = _get_backbone_hidden_size(config) for i in range(len(config.neck_hidden_sizes)): if i <= 1: self.readout_projects.append(nn.Sequential(nn.Identity())) elif i > 1: self.readout_projects.append( nn.Sequential(nn.Linear(2 * hidden_size, hidden_size), ACT2FN[config.hidden_act]) ) def _init_reassemble_dpt(self, config): for i, factor in zip(range(len(config.neck_hidden_sizes)), config.reassemble_factors): self.layers.append(DPTReassembleLayer(config, channels=config.neck_hidden_sizes[i], factor=factor)) if config.readout_type == "project": self.readout_projects = nn.ModuleList() hidden_size = _get_backbone_hidden_size(config) for _ in range(len(config.neck_hidden_sizes)): self.readout_projects.append( nn.Sequential(nn.Linear(2 * hidden_size, hidden_size), ACT2FN[config.hidden_act]) ) def forward(self, hidden_states: List[torch.Tensor], patch_height=None, patch_width=None) -> List[torch.Tensor]: """ Args: hidden_states (`List[torch.FloatTensor]`, each of shape `(batch_size, sequence_length + 1, hidden_size)`): List of hidden states from the backbone. """ out = [] for i, hidden_state in enumerate(hidden_states): if i not in self.neck_ignore_stages: # reshape to (batch_size, num_channels, height, width) cls_token, hidden_state = hidden_state[:, 0], hidden_state[:, 1:] batch_size, sequence_length, num_channels = hidden_state.shape if patch_height is not None and patch_width is not None: hidden_state = hidden_state.reshape(batch_size, patch_height, patch_width, num_channels) else: size = int(math.sqrt(sequence_length)) hidden_state = hidden_state.reshape(batch_size, size, size, num_channels) hidden_state = hidden_state.permute(0, 3, 1, 2).contiguous() feature_shape = hidden_state.shape if self.config.readout_type == "project": # reshape to (batch_size, height*width, num_channels) hidden_state = hidden_state.flatten(2).permute((0, 2, 1)) readout = cls_token.unsqueeze(1).expand_as(hidden_state) # concatenate the readout token to the hidden states and project hidden_state = self.readout_projects[i](torch.cat((hidden_state, readout), -1)) # reshape back to (batch_size, num_channels, height, width) hidden_state = hidden_state.permute(0, 2, 1).reshape(feature_shape) elif self.config.readout_type == "add": hidden_state = hidden_state.flatten(2) + cls_token.unsqueeze(-1) hidden_state = hidden_state.reshape(feature_shape) hidden_state = self.layers[i](hidden_state) out.append(hidden_state) return out def _get_backbone_hidden_size(config): if config.backbone_config is not None and config.is_hybrid is False: return config.backbone_config.hidden_size else: return config.hidden_size class DPTReassembleLayer(nn.Module): def __init__(self, config, channels, factor): super().__init__() # projection hidden_size = _get_backbone_hidden_size(config) self.projection = nn.Conv2d(in_channels=hidden_size, out_channels=channels, kernel_size=1) # up/down sampling depending on factor if factor > 1: self.resize = nn.ConvTranspose2d(channels, channels, kernel_size=factor, stride=factor, padding=0) elif factor == 1: self.resize = nn.Identity() elif factor < 1: # so should downsample self.resize = nn.Conv2d(channels, channels, kernel_size=3, stride=int(1 / factor), padding=1) def forward(self, hidden_state): hidden_state = self.projection(hidden_state) hidden_state = self.resize(hidden_state) return hidden_state class DPTFeatureFusionStage(nn.Module): def __init__(self, config): super().__init__() self.layers = nn.ModuleList() for _ in range(len(config.neck_hidden_sizes)): self.layers.append(DPTFeatureFusionLayer(config)) def forward(self, hidden_states): # reversing the hidden_states, we start from the last hidden_states = hidden_states[::-1] fused_hidden_states = [] # first layer only uses the last hidden_state fused_hidden_state = self.layers[0](hidden_states[0]) fused_hidden_states.append(fused_hidden_state) # looping from the last layer to the second for hidden_state, layer in zip(hidden_states[1:], self.layers[1:]): fused_hidden_state = layer(fused_hidden_state, hidden_state) fused_hidden_states.append(fused_hidden_state) return fused_hidden_states class DPTPreActResidualLayer(nn.Module): """ ResidualConvUnit, pre-activate residual unit. Args: config (`[DPTConfig]`): Model configuration class defining the model architecture. """ def __init__(self, config): super().__init__() self.use_batch_norm = config.use_batch_norm_in_fusion_residual use_bias_in_fusion_residual = ( config.use_bias_in_fusion_residual if config.use_bias_in_fusion_residual is not None else not self.use_batch_norm ) self.activation1 = nn.ReLU() self.convolution1 = nn.Conv2d( config.fusion_hidden_size, config.fusion_hidden_size, kernel_size=3, stride=1, padding=1, bias=use_bias_in_fusion_residual, ) self.activation2 = nn.ReLU() self.convolution2 = nn.Conv2d( config.fusion_hidden_size, config.fusion_hidden_size, kernel_size=3, stride=1, padding=1, bias=use_bias_in_fusion_residual, ) if self.use_batch_norm: self.batch_norm1 = nn.BatchNorm2d(config.fusion_hidden_size) self.batch_norm2 = nn.BatchNorm2d(config.fusion_hidden_size) def forward(self, hidden_state: torch.Tensor) -> torch.Tensor: residual = hidden_state hidden_state = self.activation1(hidden_state) hidden_state = self.convolution1(hidden_state) if self.use_batch_norm: hidden_state = self.batch_norm1(hidden_state) hidden_state = self.activation2(hidden_state) hidden_state = self.convolution2(hidden_state) if self.use_batch_norm: hidden_state = self.batch_norm2(hidden_state) return hidden_state + residual class DPTFeatureFusionLayer(nn.Module): """Feature fusion layer, merges feature maps from different stages. Args: config (`[DPTConfig]`): Model configuration class defining the model architecture. align_corners (`bool`, *optional*, defaults to `True`): The align_corner setting for bilinear upsample. """ def __init__(self, config, align_corners=True): super().__init__() self.align_corners = align_corners self.projection = nn.Conv2d(config.fusion_hidden_size, config.fusion_hidden_size, kernel_size=1, bias=True) self.residual_layer1 = DPTPreActResidualLayer(config) self.residual_layer2 = DPTPreActResidualLayer(config) def forward(self, hidden_state, residual=None): if residual is not None: if hidden_state.shape != residual.shape: residual = nn.functional.interpolate( residual, size=(hidden_state.shape[2], hidden_state.shape[3]), mode="bilinear", align_corners=False ) hidden_state = hidden_state + self.residual_layer1(residual) hidden_state = self.residual_layer2(hidden_state) hidden_state = nn.functional.interpolate( hidden_state, scale_factor=2, mode="bilinear", align_corners=self.align_corners ) hidden_state = self.projection(hidden_state) return hidden_state class DPTPreTrainedModel(PreTrainedModel): """ An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained models. """ config_class = DPTConfig base_model_prefix = "dpt" main_input_name = "pixel_values" supports_gradient_checkpointing = True def _init_weights(self, module): """Initialize the weights""" if isinstance(module, (nn.Linear, nn.Conv2d, nn.ConvTranspose2d)): # Slightly different from the TF version which uses truncated_normal for initialization # cf https://github.com/pytorch/pytorch/pull/5617 module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) if module.bias is not None: module.bias.data.zero_() elif isinstance(module, nn.LayerNorm): module.bias.data.zero_() module.weight.data.fill_(1.0) DPT_START_DOCSTRING = r""" This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior. Parameters: config ([`ViTConfig`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. """ DPT_INPUTS_DOCSTRING = r""" Args: pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`): Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See [`DPTImageProcessor.__call__`] for details. head_mask (`torch.FloatTensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*): Mask to nullify selected heads of the self-attention modules. Mask values selected in `[0, 1]`: - 1 indicates the head is **not masked**, - 0 indicates the head is **masked**. output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~file_utils.ModelOutput`] instead of a plain tuple. """ @add_start_docstrings( "The bare DPT Model transformer outputting raw hidden-states without any specific head on top.", DPT_START_DOCSTRING, ) class DPTModel(DPTPreTrainedModel): def __init__(self, config, add_pooling_layer=True): super().__init__(config) self.config = config # vit encoder if config.is_hybrid: self.embeddings = DPTViTHybridEmbeddings(config) else: self.embeddings = DPTViTEmbeddings(config) self.encoder = DPTViTEncoder(config) self.layernorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) self.pooler = DPTViTPooler(config) if add_pooling_layer else None # Initialize weights and apply final processing self.post_init() def get_input_embeddings(self): if self.config.is_hybrid: return self.embeddings else: return self.embeddings.patch_embeddings def _prune_heads(self, heads_to_prune): """ Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base class PreTrainedModel """ for layer, heads in heads_to_prune.items(): self.encoder.layer[layer].attention.prune_heads(heads) @add_start_docstrings_to_model_forward(DPT_INPUTS_DOCSTRING) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC, output_type=BaseModelOutputWithPoolingAndIntermediateActivations, config_class=_CONFIG_FOR_DOC, modality="vision", expected_output=_EXPECTED_OUTPUT_SHAPE, ) def forward( self, pixel_values: torch.FloatTensor, head_mask: Optional[torch.FloatTensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, BaseModelOutputWithPoolingAndIntermediateActivations]: output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.use_return_dict # Prepare head mask if needed # 1.0 in head_mask indicate we keep the head # attention_probs has shape bsz x n_heads x N x N # input head_mask has shape [num_heads] or [num_hidden_layers x num_heads] # and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length] head_mask = self.get_head_mask(head_mask, self.config.num_hidden_layers) embedding_output = self.embeddings(pixel_values, return_dict=return_dict) embedding_last_hidden_states = embedding_output[0] if not return_dict else embedding_output.last_hidden_states encoder_outputs = self.encoder( embedding_last_hidden_states, head_mask=head_mask, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) sequence_output = encoder_outputs[0] sequence_output = self.layernorm(sequence_output) pooled_output = self.pooler(sequence_output) if self.pooler is not None else None if not return_dict: head_outputs = (sequence_output, pooled_output) if pooled_output is not None else (sequence_output,) return head_outputs + encoder_outputs[1:] + embedding_output[1:] return BaseModelOutputWithPoolingAndIntermediateActivations( last_hidden_state=sequence_output, pooler_output=pooled_output, hidden_states=encoder_outputs.hidden_states, attentions=encoder_outputs.attentions, intermediate_activations=embedding_output.intermediate_activations, ) # Copied from transformers.models.vit.modeling_vit.ViTPooler with ViT->DPT class DPTViTPooler(nn.Module): def __init__(self, config: DPTConfig): super().__init__() self.dense = nn.Linear(config.hidden_size, config.hidden_size) self.activation = nn.Tanh() def forward(self, hidden_states): # We "pool" the model by simply taking the hidden state corresponding # to the first token. first_token_tensor = hidden_states[:, 0] pooled_output = self.dense(first_token_tensor) pooled_output = self.activation(pooled_output) return pooled_output class DPTNeck(nn.Module): """ DPTNeck. A neck is a module that is normally used between the backbone and the head. It takes a list of tensors as input and produces another list of tensors as output. For DPT, it includes 2 stages: * DPTReassembleStage * DPTFeatureFusionStage. Args: config (dict): config dict. """ def __init__(self, config): super().__init__() self.config = config # postprocessing: only required in case of a non-hierarchical backbone (e.g. ViT, BEiT) if config.backbone_config is not None and config.backbone_config.model_type in ["swinv2"]: self.reassemble_stage = None else: self.reassemble_stage = DPTReassembleStage(config) self.convs = nn.ModuleList() for channel in config.neck_hidden_sizes: self.convs.append(nn.Conv2d(channel, config.fusion_hidden_size, kernel_size=3, padding=1, bias=False)) # fusion self.fusion_stage = DPTFeatureFusionStage(config) def forward(self, hidden_states: List[torch.Tensor], patch_height=None, patch_width=None) -> List[torch.Tensor]: """ Args: hidden_states (`List[torch.FloatTensor]`, each of shape `(batch_size, sequence_length, hidden_size)` or `(batch_size, hidden_size, height, width)`): List of hidden states from the backbone. """ if not isinstance(hidden_states, (tuple, list)): raise ValueError("hidden_states should be a tuple or list of tensors") if len(hidden_states) != len(self.config.neck_hidden_sizes): raise ValueError("The number of hidden states should be equal to the number of neck hidden sizes.") # postprocess hidden states if self.reassemble_stage is not None: hidden_states = self.reassemble_stage(hidden_states, patch_height, patch_width) features = [self.convs[i](feature) for i, feature in enumerate(hidden_states)] # fusion blocks output = self.fusion_stage(features) return output class DPTDepthEstimationHead(nn.Module): """ Output head head consisting of 3 convolutional layers. It progressively halves the feature dimension and upsamples the predictions to the input resolution after the first convolutional layer (details can be found in the paper's supplementary material). """ def __init__(self, config): super().__init__() self.config = config self.projection = None if config.add_projection: self.projection = nn.Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)) features = config.fusion_hidden_size self.head = nn.Sequential( nn.Conv2d(features, features // 2, kernel_size=3, stride=1, padding=1), nn.Upsample(scale_factor=2, mode="bilinear", align_corners=True), nn.Conv2d(features // 2, 32, kernel_size=3, stride=1, padding=1), nn.ReLU(), nn.Conv2d(32, 1, kernel_size=1, stride=1, padding=0), nn.ReLU(), ) def forward(self, hidden_states: List[torch.Tensor]) -> torch.Tensor: # use last features hidden_states = hidden_states[self.config.head_in_index] if self.projection is not None: hidden_states = self.projection(hidden_states) hidden_states = nn.ReLU()(hidden_states) predicted_depth = self.head(hidden_states) predicted_depth = predicted_depth.squeeze(dim=1) return predicted_depth @add_start_docstrings( """ DPT Model with a depth estimation head on top (consisting of 3 convolutional layers) e.g. for KITTI, NYUv2. """, DPT_START_DOCSTRING, ) class DPTForDepthEstimation(DPTPreTrainedModel): def __init__(self, config): super().__init__(config) self.backbone = None if config.backbone_config is not None and config.is_hybrid is False: self.backbone = load_backbone(config) else: self.dpt = DPTModel(config, add_pooling_layer=False) # Neck self.neck = DPTNeck(config) # Depth estimation head self.head = DPTDepthEstimationHead(config) # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(DPT_INPUTS_DOCSTRING) @replace_return_docstrings(output_type=DepthEstimatorOutput, config_class=_CONFIG_FOR_DOC) def forward( self, pixel_values: torch.FloatTensor, head_mask: Optional[torch.FloatTensor] = None, labels: Optional[torch.LongTensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple[torch.Tensor], DepthEstimatorOutput]: r""" labels (`torch.LongTensor` of shape `(batch_size, height, width)`, *optional*): Ground truth depth estimation maps for computing the loss. Returns: Examples: ```python >>> from transformers import AutoImageProcessor, DPTForDepthEstimation >>> import torch >>> import numpy as np >>> from PIL import Image >>> import requests >>> url = "http://images.cocodataset.org/val2017/000000039769.jpg" >>> image = Image.open(requests.get(url, stream=True).raw) >>> image_processor = AutoImageProcessor.from_pretrained("Intel/dpt-large") >>> model = DPTForDepthEstimation.from_pretrained("Intel/dpt-large") >>> # prepare image for the model >>> inputs = image_processor(images=image, return_tensors="pt") >>> with torch.no_grad(): ... outputs = model(**inputs) ... predicted_depth = outputs.predicted_depth >>> # interpolate to original size >>> prediction = torch.nn.functional.interpolate( ... predicted_depth.unsqueeze(1), ... size=image.size[::-1], ... mode="bicubic", ... align_corners=False, ... ) >>> # visualize the prediction >>> output = prediction.squeeze().cpu().numpy() >>> formatted = (output * 255 / np.max(output)).astype("uint8") >>> depth = Image.fromarray(formatted) ```""" return_dict = return_dict if return_dict is not None else self.config.use_return_dict output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions if self.backbone is not None: outputs = self.backbone.forward_with_filtered_kwargs( pixel_values, output_hidden_states=output_hidden_states, output_attentions=output_attentions ) hidden_states = outputs.feature_maps else: outputs = self.dpt( pixel_values, head_mask=head_mask, output_attentions=output_attentions, output_hidden_states=True, # we need the intermediate hidden states return_dict=return_dict, ) hidden_states = outputs.hidden_states if return_dict else outputs[1] # only keep certain features based on config.backbone_out_indices # note that the hidden_states also include the initial embeddings if not self.config.is_hybrid: hidden_states = [ feature for idx, feature in enumerate(hidden_states[1:]) if idx in self.config.backbone_out_indices ] else: backbone_hidden_states = outputs.intermediate_activations if return_dict else list(outputs[-1]) backbone_hidden_states.extend( feature for idx, feature in enumerate(hidden_states[1:]) if idx in self.config.backbone_out_indices[2:] ) hidden_states = backbone_hidden_states patch_height, patch_width = None, None if self.config.backbone_config is not None and self.config.is_hybrid is False: _, _, height, width = pixel_values.shape patch_size = self.config.backbone_config.patch_size patch_height = height // patch_size patch_width = width // patch_size hidden_states = self.neck(hidden_states, patch_height, patch_width) predicted_depth = self.head(hidden_states) loss = None if labels is not None: raise NotImplementedError("Training is not implemented yet") if not return_dict: if output_hidden_states: output = (predicted_depth,) + outputs[1:] else: output = (predicted_depth,) + outputs[2:] return ((loss,) + output) if loss is not None else output return DepthEstimatorOutput( loss=loss, predicted_depth=predicted_depth, hidden_states=outputs.hidden_states if output_hidden_states else None, attentions=outputs.attentions, ) class DPTSemanticSegmentationHead(nn.Module): def __init__(self, config): super().__init__() self.config = config features = config.fusion_hidden_size self.head = nn.Sequential( nn.Conv2d(features, features, kernel_size=3, padding=1, bias=False), nn.BatchNorm2d(features), nn.ReLU(), nn.Dropout(config.semantic_classifier_dropout), nn.Conv2d(features, config.num_labels, kernel_size=1), nn.Upsample(scale_factor=2, mode="bilinear", align_corners=True), ) def forward(self, hidden_states: List[torch.Tensor]) -> torch.Tensor: # use last features hidden_states = hidden_states[self.config.head_in_index] logits = self.head(hidden_states) return logits class DPTAuxiliaryHead(nn.Module): def __init__(self, config): super().__init__() features = config.fusion_hidden_size self.head = nn.Sequential( nn.Conv2d(features, features, kernel_size=3, padding=1, bias=False), nn.BatchNorm2d(features), nn.ReLU(), nn.Dropout(0.1, False), nn.Conv2d(features, config.num_labels, kernel_size=1), ) def forward(self, hidden_states): logits = self.head(hidden_states) return logits @add_start_docstrings( """ DPT Model with a semantic segmentation head on top e.g. for ADE20k, CityScapes. """, DPT_START_DOCSTRING, ) class DPTForSemanticSegmentation(DPTPreTrainedModel): def __init__(self, config): super().__init__(config) self.dpt = DPTModel(config, add_pooling_layer=False) # Neck self.neck = DPTNeck(config) # Segmentation head(s) self.head = DPTSemanticSegmentationHead(config) self.auxiliary_head = DPTAuxiliaryHead(config) if config.use_auxiliary_head else None # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(DPT_INPUTS_DOCSTRING) @replace_return_docstrings(output_type=SemanticSegmenterOutput, config_class=_CONFIG_FOR_DOC) def forward( self, pixel_values: Optional[torch.FloatTensor] = None, head_mask: Optional[torch.FloatTensor] = None, labels: Optional[torch.LongTensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple[torch.Tensor], SemanticSegmenterOutput]: r""" labels (`torch.LongTensor` of shape `(batch_size, height, width)`, *optional*): Ground truth semantic segmentation maps for computing the loss. Indices should be in `[0, ..., config.num_labels - 1]`. If `config.num_labels > 1`, a classification loss is computed (Cross-Entropy). Returns: Examples: ```python >>> from transformers import AutoImageProcessor, DPTForSemanticSegmentation >>> from PIL import Image >>> import requests >>> url = "http://images.cocodataset.org/val2017/000000039769.jpg" >>> image = Image.open(requests.get(url, stream=True).raw) >>> image_processor = AutoImageProcessor.from_pretrained("Intel/dpt-large-ade") >>> model = DPTForSemanticSegmentation.from_pretrained("Intel/dpt-large-ade") >>> inputs = image_processor(images=image, return_tensors="pt") >>> outputs = model(**inputs) >>> logits = outputs.logits ```""" return_dict = return_dict if return_dict is not None else self.config.use_return_dict output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) outputs = self.dpt( pixel_values, head_mask=head_mask, output_attentions=output_attentions, output_hidden_states=True, # we need the intermediate hidden states return_dict=return_dict, ) hidden_states = outputs.hidden_states if return_dict else outputs[1] # only keep certain features based on config.backbone_out_indices # note that the hidden_states also include the initial embeddings if not self.config.is_hybrid: hidden_states = [ feature for idx, feature in enumerate(hidden_states[1:]) if idx in self.config.backbone_out_indices ] else: backbone_hidden_states = outputs.intermediate_activations if return_dict else list(outputs[-1]) backbone_hidden_states.extend( feature for idx, feature in enumerate(hidden_states[1:]) if idx in self.config.backbone_out_indices[2:] ) hidden_states = backbone_hidden_states hidden_states = self.neck(hidden_states=hidden_states) logits = self.head(hidden_states) auxiliary_logits = None if self.auxiliary_head is not None: auxiliary_logits = self.auxiliary_head(hidden_states[-1]) loss = None if labels is not None: if self.config.num_labels == 1: raise ValueError("The number of labels should be greater than one") else: # upsample logits to the images' original size upsampled_logits = nn.functional.interpolate( logits, size=labels.shape[-2:], mode="bilinear", align_corners=False ) if auxiliary_logits is not None: upsampled_auxiliary_logits = nn.functional.interpolate( auxiliary_logits, size=labels.shape[-2:], mode="bilinear", align_corners=False ) # compute weighted loss loss_fct = CrossEntropyLoss(ignore_index=self.config.semantic_loss_ignore_index) main_loss = loss_fct(upsampled_logits, labels) auxiliary_loss = loss_fct(upsampled_auxiliary_logits, labels) loss = main_loss + self.config.auxiliary_loss_weight * auxiliary_loss if not return_dict: if output_hidden_states: output = (logits,) + outputs[1:] else: output = (logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return SemanticSegmenterOutput( loss=loss, logits=logits, hidden_states=outputs.hidden_states if output_hidden_states else None, attentions=outputs.attentions, )