# coding=utf-8 # Copyright 2023 Microsoft Research and The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ PyTorch FocalNet model.""" import collections.abc import math from dataclasses import dataclass from typing import Optional, Tuple, Union import torch import torch.utils.checkpoint from torch import nn from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss from ...activations import ACT2FN from ...modeling_outputs import BackboneOutput from ...modeling_utils import PreTrainedModel from ...utils import ( ModelOutput, add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, logging, replace_return_docstrings, ) from ...utils.backbone_utils import BackboneMixin from .configuration_focalnet import FocalNetConfig logger = logging.get_logger(__name__) # General docstring _CONFIG_FOR_DOC = "FocalNetConfig" # Base docstring _CHECKPOINT_FOR_DOC = "microsoft/focalnet-tiny" _EXPECTED_OUTPUT_SHAPE = [1, 49, 768] # Image classification docstring _IMAGE_CLASS_CHECKPOINT = "microsoft/focalnet-tiny" _IMAGE_CLASS_EXPECTED_OUTPUT = "tabby, tabby cat" from ..deprecated._archive_maps import FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST # noqa: F401, E402 @dataclass class FocalNetEncoderOutput(ModelOutput): """ FocalNet encoder's outputs, with potential hidden states. Args: last_hidden_state (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`): Sequence of hidden-states at the output of the last layer of the model. hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each stage) of shape `(batch_size, sequence_length, hidden_size)`. Hidden-states of the model at the output of each layer plus the initial embedding outputs. reshaped_hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each stage) of shape `(batch_size, hidden_size, height, width)`. Hidden-states of the model at the output of each layer plus the initial embedding outputs reshaped to include the spatial dimensions. """ last_hidden_state: torch.FloatTensor = None hidden_states: Optional[Tuple[torch.FloatTensor]] = None reshaped_hidden_states: Optional[Tuple[torch.FloatTensor]] = None @dataclass class FocalNetModelOutput(ModelOutput): """ FocalNet model's outputs that also contains a pooling of the last hidden states. Args: last_hidden_state (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`): Sequence of hidden-states at the output of the last layer of the model. pooler_output (`torch.FloatTensor` of shape `(batch_size, hidden_size)`, *optional*, returned when `add_pooling_layer=True` is passed): Average pooling of the last layer hidden-state. hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each stage) of shape `(batch_size, sequence_length, hidden_size)`. Hidden-states of the model at the output of each layer plus the initial embedding outputs. reshaped_hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each stage) of shape `(batch_size, hidden_size, height, width)`. Hidden-states of the model at the output of each layer plus the initial embedding outputs reshaped to include the spatial dimensions. """ last_hidden_state: torch.FloatTensor = None pooler_output: Optional[torch.FloatTensor] = None hidden_states: Optional[Tuple[torch.FloatTensor]] = None reshaped_hidden_states: Optional[Tuple[torch.FloatTensor]] = None @dataclass class FocalNetMaskedImageModelingOutput(ModelOutput): """ FocalNet masked image model outputs. Args: loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `bool_masked_pos` is provided): Masked image modeling (MLM) loss. reconstruction (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`): Reconstructed pixel values. hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each stage) of shape `(batch_size, sequence_length, hidden_size)`. Hidden-states of the model at the output of each layer plus the initial embedding outputs. reshaped_hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each stage) of shape `(batch_size, hidden_size, height, width)`. Hidden-states of the model at the output of each layer plus the initial embedding outputs reshaped to include the spatial dimensions. """ loss: Optional[torch.FloatTensor] = None reconstruction: torch.FloatTensor = None hidden_states: Optional[Tuple[torch.FloatTensor]] = None reshaped_hidden_states: Optional[Tuple[torch.FloatTensor]] = None @dataclass class FocalNetImageClassifierOutput(ModelOutput): """ FocalNet outputs for image classification. Args: loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `labels` is provided): Classification (or regression if config.num_labels==1) loss. logits (`torch.FloatTensor` of shape `(batch_size, config.num_labels)`): Classification (or regression if config.num_labels==1) scores (before SoftMax). hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each stage) of shape `(batch_size, sequence_length, hidden_size)`. Hidden-states of the model at the output of each layer plus the initial embedding outputs. reshaped_hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each stage) of shape `(batch_size, hidden_size, height, width)`. Hidden-states of the model at the output of each layer plus the initial embedding outputs reshaped to include the spatial dimensions. """ loss: Optional[torch.FloatTensor] = None logits: torch.FloatTensor = None hidden_states: Optional[Tuple[torch.FloatTensor]] = None reshaped_hidden_states: Optional[Tuple[torch.FloatTensor]] = None class FocalNetEmbeddings(nn.Module): """ Construct the patch embeddings and layernorm. Optionally, also the mask token. """ def __init__(self, config, use_mask_token=False): super().__init__() self.patch_embeddings = FocalNetPatchEmbeddings( config=config, image_size=config.image_size, patch_size=config.patch_size, num_channels=config.num_channels, embed_dim=config.embed_dim, use_conv_embed=config.use_conv_embed, is_stem=True, ) self.patch_grid = self.patch_embeddings.grid_size self.mask_token = nn.Parameter(torch.zeros(1, 1, config.embed_dim)) if use_mask_token else None self.norm = nn.LayerNorm(config.embed_dim, eps=config.layer_norm_eps) self.dropout = nn.Dropout(config.hidden_dropout_prob) def forward( self, pixel_values: Optional[torch.FloatTensor], bool_masked_pos: Optional[torch.BoolTensor] = None ) -> Tuple[torch.Tensor]: embeddings, output_dimensions = self.patch_embeddings(pixel_values) embeddings = self.norm(embeddings) batch_size, seq_len, _ = embeddings.size() if bool_masked_pos is not None: mask_tokens = self.mask_token.expand(batch_size, seq_len, -1) # replace the masked visual tokens by mask_tokens mask = bool_masked_pos.unsqueeze(-1).type_as(mask_tokens) embeddings = embeddings * (1.0 - mask) + mask_tokens * mask embeddings = self.dropout(embeddings) return embeddings, output_dimensions class FocalNetPatchEmbeddings(nn.Module): def __init__( self, config, image_size, patch_size, num_channels, embed_dim, add_norm=False, use_conv_embed=False, is_stem=False, ): super().__init__() image_size = image_size if isinstance(image_size, collections.abc.Iterable) else (image_size, image_size) patch_size = patch_size if isinstance(patch_size, collections.abc.Iterable) else (patch_size, patch_size) num_patches = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) self.image_size = image_size self.patch_size = patch_size self.num_channels = num_channels self.num_patches = num_patches self.grid_size = (image_size[0] // patch_size[0], image_size[1] // patch_size[1]) if use_conv_embed: # if we choose to use conv embedding, then we treat the stem and non-stem differently if is_stem: kernel_size = 7 padding = 2 stride = 4 else: kernel_size = 3 padding = 1 stride = 2 self.projection = nn.Conv2d( num_channels, embed_dim, kernel_size=kernel_size, stride=stride, padding=padding ) else: self.projection = nn.Conv2d(num_channels, embed_dim, kernel_size=patch_size, stride=patch_size) if add_norm: self.norm = nn.LayerNorm(embed_dim, eps=config.layer_norm_eps) else: self.norm = None def maybe_pad(self, pixel_values, height, width): if width % self.patch_size[1] != 0: pad_values = (0, self.patch_size[1] - width % self.patch_size[1]) pixel_values = nn.functional.pad(pixel_values, pad_values) if height % self.patch_size[0] != 0: pad_values = (0, 0, 0, self.patch_size[0] - height % self.patch_size[0]) pixel_values = nn.functional.pad(pixel_values, pad_values) return pixel_values def forward(self, pixel_values: Optional[torch.FloatTensor]) -> Tuple[torch.Tensor, Tuple[int]]: _, num_channels, height, width = pixel_values.shape if num_channels != self.num_channels: raise ValueError( "Make sure that the channel dimension of the pixel values match with the one set in the configuration." ) # pad the input to be divisible by self.patch_size, if needed pixel_values = self.maybe_pad(pixel_values, height, width) embeddings = self.projection(pixel_values) _, _, height, width = embeddings.shape output_dimensions = (height, width) embeddings = embeddings.flatten(2).transpose(1, 2) if self.norm is not None: embeddings = self.norm(embeddings) return embeddings, output_dimensions # Copied from transformers.models.beit.modeling_beit.drop_path def drop_path(input: torch.Tensor, drop_prob: float = 0.0, training: bool = False) -> torch.Tensor: """ Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks). Comment by Ross Wightman: This is the same as the DropConnect impl I created for EfficientNet, etc networks, however, the original name is misleading as 'Drop Connect' is a different form of dropout in a separate paper... See discussion: https://github.com/tensorflow/tpu/issues/494#issuecomment-532968956 ... I've opted for changing the layer and argument names to 'drop path' rather than mix DropConnect as a layer name and use 'survival rate' as the argument. """ if drop_prob == 0.0 or not training: return input keep_prob = 1 - drop_prob shape = (input.shape[0],) + (1,) * (input.ndim - 1) # work with diff dim tensors, not just 2D ConvNets random_tensor = keep_prob + torch.rand(shape, dtype=input.dtype, device=input.device) random_tensor.floor_() # binarize output = input.div(keep_prob) * random_tensor return output # Copied from transformers.models.beit.modeling_beit.BeitDropPath with Beit->FocalNet class FocalNetDropPath(nn.Module): """Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks).""" def __init__(self, drop_prob: Optional[float] = None) -> None: super().__init__() self.drop_prob = drop_prob def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: return drop_path(hidden_states, self.drop_prob, self.training) def extra_repr(self) -> str: return "p={}".format(self.drop_prob) class FocalNetModulation(nn.Module): def __init__(self, config, index, dim, focal_factor=2, bias=True, projection_dropout=0.0): super().__init__() self.dim = dim self.focal_window = config.focal_windows[index] self.focal_level = config.focal_levels[index] self.focal_factor = focal_factor self.use_post_layernorm_in_modulation = config.use_post_layernorm_in_modulation self.normalize_modulator = config.normalize_modulator self.projection_in = nn.Linear(dim, 2 * dim + (self.focal_level + 1), bias=bias) self.projection_context = nn.Conv2d(dim, dim, kernel_size=1, stride=1, bias=bias) self.activation = nn.GELU() self.projection_out = nn.Linear(dim, dim) self.projection_dropout = nn.Dropout(projection_dropout) self.focal_layers = nn.ModuleList() self.kernel_sizes = [] for k in range(self.focal_level): kernel_size = self.focal_factor * k + self.focal_window self.focal_layers.append( nn.Sequential( nn.Conv2d( dim, dim, kernel_size=kernel_size, stride=1, groups=dim, padding=kernel_size // 2, bias=False ), nn.GELU(), ) ) self.kernel_sizes.append(kernel_size) if self.use_post_layernorm_in_modulation: self.layernorm = nn.LayerNorm(dim, eps=config.layer_norm_eps) def forward(self, hidden_state): """ Args: hidden_state: Input features with shape of (batch_size, height, width, num_channels) """ num_channels = hidden_state.shape[-1] # pre linear projection x = self.projection_in(hidden_state).permute(0, 3, 1, 2).contiguous() q, ctx, self.gates = torch.split(x, (num_channels, num_channels, self.focal_level + 1), 1) # context aggreation ctx_all = 0 for level in range(self.focal_level): ctx = self.focal_layers[level](ctx) ctx_all = ctx_all + ctx * self.gates[:, level : level + 1] ctx_global = self.activation(ctx.mean(2, keepdim=True).mean(3, keepdim=True)) ctx_all = ctx_all + ctx_global * self.gates[:, self.focal_level :] # normalize context if self.normalize_modulator: ctx_all = ctx_all / (self.focal_level + 1) # focal modulation self.modulator = self.projection_context(ctx_all) x_out = q * self.modulator x_out = x_out.permute(0, 2, 3, 1).contiguous() if self.use_post_layernorm_in_modulation: x_out = self.layernorm(x_out) # post linear porjection x_out = self.projection_out(x_out) x_out = self.projection_dropout(x_out) return x_out class FocalNetMlp(nn.Module): def __init__(self, config, in_features, hidden_features=None, out_features=None, drop=0.0): super().__init__() out_features = out_features or in_features hidden_features = hidden_features or in_features self.fc1 = nn.Linear(in_features, hidden_features) self.activation = ACT2FN[config.hidden_act] self.fc2 = nn.Linear(hidden_features, out_features) self.drop = nn.Dropout(drop) def forward(self, hidden_state): hidden_state = self.fc1(hidden_state) hidden_state = self.activation(hidden_state) hidden_state = self.drop(hidden_state) hidden_state = self.fc2(hidden_state) hidden_state = self.drop(hidden_state) return hidden_state class FocalNetLayer(nn.Module): r"""Focal Modulation Network layer (block). Args: config (`FocalNetConfig`): Model config. index (`int`): Layer index. dim (`int`): Number of input channels. input_resolution (`Tuple[int]`): Input resulotion. drop_path (`float`, *optional*, defaults to 0.0): Stochastic depth rate. """ def __init__(self, config, index, dim, input_resolution, drop_path=0.0): super().__init__() self.config = config # layer-specific attributes self.dim = dim self.input_resolution = input_resolution # general attributes self.drop = config.hidden_dropout_prob self.use_post_layernorm = config.use_post_layernorm self.norm1 = nn.LayerNorm(dim, eps=config.layer_norm_eps) self.modulation = FocalNetModulation( config=config, index=index, dim=dim, projection_dropout=self.drop, ) self.drop_path = FocalNetDropPath(drop_path) if drop_path > 0.0 else nn.Identity() self.norm2 = nn.LayerNorm(dim, eps=config.layer_norm_eps) mlp_hidden_dim = int(dim * config.mlp_ratio) self.mlp = FocalNetMlp(config=config, in_features=dim, hidden_features=mlp_hidden_dim, drop=self.drop) self.gamma_1 = 1.0 self.gamma_2 = 1.0 if config.use_layerscale: self.gamma_1 = nn.Parameter(config.layerscale_value * torch.ones((dim)), requires_grad=True) self.gamma_2 = nn.Parameter(config.layerscale_value * torch.ones((dim)), requires_grad=True) def forward(self, hidden_state, input_dimensions): height, width = input_dimensions batch_size, _, num_channels = hidden_state.shape shortcut = hidden_state # Focal Modulation hidden_state = hidden_state if self.use_post_layernorm else self.norm1(hidden_state) hidden_state = hidden_state.view(batch_size, height, width, num_channels) hidden_state = self.modulation(hidden_state).view(batch_size, height * width, num_channels) hidden_state = hidden_state if not self.use_post_layernorm else self.norm1(hidden_state) # FFN hidden_state = shortcut + self.drop_path(self.gamma_1 * hidden_state) hidden_state = hidden_state + self.drop_path( self.gamma_2 * (self.norm2(self.mlp(hidden_state)) if self.use_post_layernorm else self.mlp(self.norm2(hidden_state))) ) return hidden_state class FocalNetStage(nn.Module): def __init__(self, config, index, input_resolution): super().__init__() self.config = config self.num_stages = len(config.depths) embed_dim = [config.embed_dim * (2**i) for i in range(self.num_stages)] dim = embed_dim[index] out_dim = embed_dim[index + 1] if (index < self.num_stages - 1) else None downsample = FocalNetPatchEmbeddings if (index < self.num_stages - 1) else None # stochastic depth decay rule dpr = [x.item() for x in torch.linspace(0, config.drop_path_rate, sum(config.depths))] drop_path = dpr[sum(config.depths[:index]) : sum(config.depths[: index + 1])] self.layers = nn.ModuleList( [ FocalNetLayer( config=config, index=index, dim=dim, input_resolution=input_resolution, drop_path=drop_path[i] if isinstance(drop_path, list) else drop_path, ) for i in range(config.depths[index]) ] ) if downsample is not None: self.downsample = downsample( config=config, image_size=input_resolution, patch_size=2, num_channels=dim, embed_dim=out_dim, add_norm=True, use_conv_embed=config.use_conv_embed, is_stem=False, ) else: self.downsample = None self.pointing = False def forward(self, hidden_states: torch.Tensor, input_dimensions: Tuple[int, int]) -> Tuple[torch.Tensor]: height, width = input_dimensions for layer_module in self.layers: hidden_states = layer_module(hidden_states, input_dimensions) hidden_states_before_downsampling = hidden_states if self.downsample is not None: height, width = input_dimensions hidden_states = hidden_states.transpose(1, 2).reshape( hidden_states_before_downsampling.shape[0], -1, height, width ) hidden_states, output_dimensions = self.downsample(hidden_states) else: output_dimensions = (height, width, height, width) stage_outputs = (hidden_states, hidden_states_before_downsampling, output_dimensions) return stage_outputs class FocalNetEncoder(nn.Module): def __init__(self, config, grid_size): super().__init__() self.num_stages = len(config.depths) self.config = config self.stages = nn.ModuleList( [ FocalNetStage( config=config, index=i_layer, input_resolution=(grid_size[0] // (2**i_layer), grid_size[1] // (2**i_layer)), ) for i_layer in range(self.num_stages) ] ) self.gradient_checkpointing = False def forward( self, hidden_states: torch.Tensor, input_dimensions: Tuple[int, int], output_hidden_states: Optional[bool] = False, output_hidden_states_before_downsampling: Optional[bool] = False, return_dict: Optional[bool] = True, ) -> Union[Tuple, FocalNetEncoderOutput]: all_hidden_states = () if output_hidden_states else None all_reshaped_hidden_states = () if output_hidden_states else None if output_hidden_states: batch_size, _, hidden_size = hidden_states.shape # rearrange b (h w) c -> b c h w reshaped_hidden_state = hidden_states.view(batch_size, *input_dimensions, hidden_size) reshaped_hidden_state = reshaped_hidden_state.permute(0, 3, 1, 2) all_hidden_states += (hidden_states,) all_reshaped_hidden_states += (reshaped_hidden_state,) for i, stage_module in enumerate(self.stages): if self.gradient_checkpointing and self.training: stage_outputs = self._gradient_checkpointing_func( stage_module.__call__, hidden_states, input_dimensions, ) else: stage_outputs = stage_module(hidden_states, input_dimensions) hidden_states = stage_outputs[0] hidden_states_before_downsampling = stage_outputs[1] output_dimensions = stage_outputs[2] input_dimensions = (output_dimensions[-2], output_dimensions[-1]) if output_hidden_states and output_hidden_states_before_downsampling: batch_size, _, hidden_size = hidden_states_before_downsampling.shape # rearrange b (h w) c -> b c h w # here we use the original (not downsampled) height and width reshaped_hidden_state = hidden_states_before_downsampling.view( batch_size, *(output_dimensions[0], output_dimensions[1]), hidden_size ) reshaped_hidden_state = reshaped_hidden_state.permute(0, 3, 1, 2) all_hidden_states += (hidden_states_before_downsampling,) all_reshaped_hidden_states += (reshaped_hidden_state,) elif output_hidden_states and not output_hidden_states_before_downsampling: batch_size, _, hidden_size = hidden_states.shape # rearrange b (h w) c -> b c h w reshaped_hidden_state = hidden_states.view(batch_size, *input_dimensions, hidden_size) reshaped_hidden_state = reshaped_hidden_state.permute(0, 3, 1, 2) all_hidden_states += (hidden_states,) all_reshaped_hidden_states += (reshaped_hidden_state,) if not return_dict: return tuple(v for v in [hidden_states, all_hidden_states] if v is not None) return FocalNetEncoderOutput( last_hidden_state=hidden_states, hidden_states=all_hidden_states, reshaped_hidden_states=all_reshaped_hidden_states, ) # Copied from transformers.models.swin.modeling_swin.SwinPreTrainedModel with Swin->FocalNet,swin->focalnet class FocalNetPreTrainedModel(PreTrainedModel): """ An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained models. """ config_class = FocalNetConfig base_model_prefix = "focalnet" main_input_name = "pixel_values" supports_gradient_checkpointing = True def _init_weights(self, module): """Initialize the weights""" if isinstance(module, (nn.Linear, nn.Conv2d)): # Slightly different from the TF version which uses truncated_normal for initialization # cf https://github.com/pytorch/pytorch/pull/5617 module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) if module.bias is not None: module.bias.data.zero_() elif isinstance(module, nn.LayerNorm): module.bias.data.zero_() module.weight.data.fill_(1.0) FOCALNET_START_DOCSTRING = r""" This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) sub-class. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior. Parameters: config ([`FocalNetConfig`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. """ FOCALNET_INPUTS_DOCSTRING = r""" Args: pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`): Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See [`AutoImageProcessor.__call__`] for details. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. """ @add_start_docstrings( "The bare FocalNet Model outputting raw hidden-states without any specific head on top.", FOCALNET_START_DOCSTRING, ) class FocalNetModel(FocalNetPreTrainedModel): def __init__(self, config, add_pooling_layer=True, use_mask_token=False): super().__init__(config) self.config = config self.num_stages = len(config.depths) self.num_features = int(config.embed_dim * 2 ** (self.num_stages - 1)) self.embeddings = FocalNetEmbeddings(config, use_mask_token=use_mask_token) self.encoder = FocalNetEncoder(config, self.embeddings.patch_grid) self.layernorm = nn.LayerNorm(self.num_features, eps=config.layer_norm_eps) self.pooler = nn.AdaptiveAvgPool1d(1) if add_pooling_layer else None # Initialize weights and apply final processing self.post_init() def get_input_embeddings(self): return self.embeddings.patch_embeddings @add_start_docstrings_to_model_forward(FOCALNET_INPUTS_DOCSTRING) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC, output_type=FocalNetModelOutput, config_class=_CONFIG_FOR_DOC, modality="vision", expected_output=_EXPECTED_OUTPUT_SHAPE, ) def forward( self, pixel_values: Optional[torch.FloatTensor] = None, bool_masked_pos: Optional[torch.BoolTensor] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, FocalNetModelOutput]: r""" bool_masked_pos (`torch.BoolTensor` of shape `(batch_size, num_patches)`): Boolean masked positions. Indicates which patches are masked (1) and which aren't (0). """ output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.use_return_dict if pixel_values is None: raise ValueError("You have to specify pixel_values") embedding_output, input_dimensions = self.embeddings(pixel_values, bool_masked_pos=bool_masked_pos) encoder_outputs = self.encoder( embedding_output, input_dimensions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) sequence_output = encoder_outputs[0] sequence_output = self.layernorm(sequence_output) pooled_output = None if self.pooler is not None: pooled_output = self.pooler(sequence_output.transpose(1, 2)) pooled_output = torch.flatten(pooled_output, 1) if not return_dict: output = (sequence_output, pooled_output) + encoder_outputs[1:] return output return FocalNetModelOutput( last_hidden_state=sequence_output, pooler_output=pooled_output, hidden_states=encoder_outputs.hidden_states, reshaped_hidden_states=encoder_outputs.reshaped_hidden_states, ) @add_start_docstrings( """FocalNet Model with a decoder on top for masked image modeling. This follows the same implementation as in [SimMIM](https://arxiv.org/abs/2111.09886). Note that we provide a script to pre-train this model on custom data in our [examples directory](https://github.com/huggingface/transformers/tree/main/examples/pytorch/image-pretraining). """, FOCALNET_START_DOCSTRING, ) class FocalNetForMaskedImageModeling(FocalNetPreTrainedModel): def __init__(self, config): super().__init__(config) self.focalnet = FocalNetModel(config, add_pooling_layer=False, use_mask_token=True) self.num_stages = len(config.depths) num_features = int(config.embed_dim * 2 ** (self.num_stages - 1)) self.decoder = nn.Sequential( nn.Conv2d( in_channels=num_features, out_channels=config.encoder_stride**2 * config.num_channels, kernel_size=1 ), nn.PixelShuffle(config.encoder_stride), ) # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(FOCALNET_INPUTS_DOCSTRING) @replace_return_docstrings(output_type=FocalNetMaskedImageModelingOutput, config_class=_CONFIG_FOR_DOC) def forward( self, pixel_values: Optional[torch.FloatTensor] = None, bool_masked_pos: Optional[torch.BoolTensor] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, FocalNetMaskedImageModelingOutput]: r""" bool_masked_pos (`torch.BoolTensor` of shape `(batch_size, num_patches)`): Boolean masked positions. Indicates which patches are masked (1) and which aren't (0). Returns: Examples: ```python >>> from transformers import AutoImageProcessor, FocalNetConfig, FocalNetForMaskedImageModeling >>> import torch >>> from PIL import Image >>> import requests >>> url = "http://images.cocodataset.org/val2017/000000039769.jpg" >>> image = Image.open(requests.get(url, stream=True).raw) >>> image_processor = AutoImageProcessor.from_pretrained("microsoft/focalnet-base-simmim-window6-192") >>> config = FocalNetConfig() >>> model = FocalNetForMaskedImageModeling(config) >>> num_patches = (model.config.image_size // model.config.patch_size) ** 2 >>> pixel_values = image_processor(images=image, return_tensors="pt").pixel_values >>> # create random boolean mask of shape (batch_size, num_patches) >>> bool_masked_pos = torch.randint(low=0, high=2, size=(1, num_patches)).bool() >>> outputs = model(pixel_values, bool_masked_pos=bool_masked_pos) >>> loss, reconstructed_pixel_values = outputs.loss, outputs.logits >>> list(reconstructed_pixel_values.shape) [1, 3, 192, 192] ```""" return_dict = return_dict if return_dict is not None else self.config.use_return_dict outputs = self.focalnet( pixel_values, bool_masked_pos=bool_masked_pos, output_hidden_states=output_hidden_states, return_dict=return_dict, ) sequence_output = outputs[0] # Reshape to (batch_size, num_channels, height, width) sequence_output = sequence_output.transpose(1, 2) batch_size, num_channels, sequence_length = sequence_output.shape height = width = math.floor(sequence_length**0.5) sequence_output = sequence_output.reshape(batch_size, num_channels, height, width) # Reconstruct pixel values reconstructed_pixel_values = self.decoder(sequence_output) masked_im_loss = None if bool_masked_pos is not None: size = self.config.image_size // self.config.patch_size bool_masked_pos = bool_masked_pos.reshape(-1, size, size) mask = ( bool_masked_pos.repeat_interleave(self.config.patch_size, 1) .repeat_interleave(self.config.patch_size, 2) .unsqueeze(1) .contiguous() ) reconstruction_loss = nn.functional.l1_loss(pixel_values, reconstructed_pixel_values, reduction="none") masked_im_loss = (reconstruction_loss * mask).sum() / (mask.sum() + 1e-5) / self.config.num_channels if not return_dict: output = (reconstructed_pixel_values,) + outputs[2:] return ((masked_im_loss,) + output) if masked_im_loss is not None else output return FocalNetMaskedImageModelingOutput( loss=masked_im_loss, reconstruction=reconstructed_pixel_values, hidden_states=outputs.hidden_states, reshaped_hidden_states=outputs.reshaped_hidden_states, ) @add_start_docstrings( """ FocalNet Model with an image classification head on top (a linear layer on top of the pooled output) e.g. for ImageNet. """, FOCALNET_START_DOCSTRING, ) class FocalNetForImageClassification(FocalNetPreTrainedModel): # Copied from transformers.models.swin.modeling_swin.SwinForImageClassification.__init__ with Swin->FocalNet, swin->focalnet def __init__(self, config): super().__init__(config) self.num_labels = config.num_labels self.focalnet = FocalNetModel(config) # Classifier head self.classifier = ( nn.Linear(self.focalnet.num_features, config.num_labels) if config.num_labels > 0 else nn.Identity() ) # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(FOCALNET_INPUTS_DOCSTRING) @add_code_sample_docstrings( checkpoint=_IMAGE_CLASS_CHECKPOINT, output_type=FocalNetImageClassifierOutput, config_class=_CONFIG_FOR_DOC, expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT, ) def forward( self, pixel_values: Optional[torch.FloatTensor] = None, labels: Optional[torch.LongTensor] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, FocalNetImageClassifierOutput]: r""" labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*): Labels for computing the image classification/regression loss. Indices should be in `[0, ..., config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If `config.num_labels > 1` a classification loss is computed (Cross-Entropy). """ return_dict = return_dict if return_dict is not None else self.config.use_return_dict outputs = self.focalnet( pixel_values, output_hidden_states=output_hidden_states, return_dict=return_dict, ) pooled_output = outputs[1] logits = self.classifier(pooled_output) loss = None if labels is not None: if self.config.problem_type is None: if self.num_labels == 1: self.config.problem_type = "regression" elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): self.config.problem_type = "single_label_classification" else: self.config.problem_type = "multi_label_classification" if self.config.problem_type == "regression": loss_fct = MSELoss() if self.num_labels == 1: loss = loss_fct(logits.squeeze(), labels.squeeze()) else: loss = loss_fct(logits, labels) elif self.config.problem_type == "single_label_classification": loss_fct = CrossEntropyLoss() loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1)) elif self.config.problem_type == "multi_label_classification": loss_fct = BCEWithLogitsLoss() loss = loss_fct(logits, labels) if not return_dict: output = (logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return FocalNetImageClassifierOutput( loss=loss, logits=logits, hidden_states=outputs.hidden_states, reshaped_hidden_states=outputs.reshaped_hidden_states, ) @add_start_docstrings( """ FocalNet backbone, to be used with frameworks like X-Decoder. """, FOCALNET_START_DOCSTRING, ) class FocalNetBackbone(FocalNetPreTrainedModel, BackboneMixin): def __init__(self, config: FocalNetConfig): super().__init__(config) super()._init_backbone(config) self.num_features = [config.embed_dim] + config.hidden_sizes self.focalnet = FocalNetModel(config) # initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(FOCALNET_INPUTS_DOCSTRING) @replace_return_docstrings(output_type=BackboneOutput, config_class=_CONFIG_FOR_DOC) def forward( self, pixel_values: torch.Tensor, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> BackboneOutput: """ Returns: Examples: ```python >>> from transformers import AutoImageProcessor, AutoBackbone >>> import torch >>> from PIL import Image >>> import requests >>> url = "http://images.cocodataset.org/val2017/000000039769.jpg" >>> image = Image.open(requests.get(url, stream=True).raw) >>> processor = AutoImageProcessor.from_pretrained("microsoft/focalnet-tiny-lrf") >>> model = AutoBackbone.from_pretrained("microsoft/focalnet-tiny-lrf") >>> inputs = processor(image, return_tensors="pt") >>> outputs = model(**inputs) ```""" return_dict = return_dict if return_dict is not None else self.config.use_return_dict output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) outputs = self.focalnet(pixel_values, output_hidden_states=True, return_dict=True) hidden_states = outputs.reshaped_hidden_states feature_maps = () for idx, stage in enumerate(self.stage_names): if stage in self.out_features: feature_maps += (hidden_states[idx],) if not return_dict: output = (feature_maps,) if output_hidden_states: output += (outputs.hidden_states,) return output return BackboneOutput( feature_maps=feature_maps, hidden_states=outputs.hidden_states if output_hidden_states else None, attentions=None, )