# coding=utf-8 # Copyright 2022 KAIST and The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ GLPN model configuration""" from ...configuration_utils import PretrainedConfig from ...utils import logging logger = logging.get_logger(__name__) from ..deprecated._archive_maps import GLPN_PRETRAINED_CONFIG_ARCHIVE_MAP # noqa: F401, E402 class GLPNConfig(PretrainedConfig): r""" This is the configuration class to store the configuration of a [`GLPNModel`]. It is used to instantiate an GLPN model according to the specified arguments, defining the model architecture. Instantiating a configuration with the defaults will yield a similar configuration to that of the GLPN [vinvino02/glpn-kitti](https://huggingface.co/vinvino02/glpn-kitti) architecture. Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the documentation from [`PretrainedConfig`] for more information. Args: num_channels (`int`, *optional*, defaults to 3): The number of input channels. num_encoder_blocks (`int`, *optional*, defaults to 4): The number of encoder blocks (i.e. stages in the Mix Transformer encoder). depths (`List[int]`, *optional*, defaults to `[2, 2, 2, 2]`): The number of layers in each encoder block. sr_ratios (`List[int]`, *optional*, defaults to `[8, 4, 2, 1]`): Sequence reduction ratios in each encoder block. hidden_sizes (`List[int]`, *optional*, defaults to `[32, 64, 160, 256]`): Dimension of each of the encoder blocks. patch_sizes (`List[int]`, *optional*, defaults to `[7, 3, 3, 3]`): Patch size before each encoder block. strides (`List[int]`, *optional*, defaults to `[4, 2, 2, 2]`): Stride before each encoder block. num_attention_heads (`List[int]`, *optional*, defaults to `[1, 2, 5, 8]`): Number of attention heads for each attention layer in each block of the Transformer encoder. mlp_ratios (`List[int]`, *optional*, defaults to `[4, 4, 4, 4]`): Ratio of the size of the hidden layer compared to the size of the input layer of the Mix FFNs in the encoder blocks. hidden_act (`str` or `function`, *optional*, defaults to `"gelu"`): The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`, `"relu"`, `"selu"` and `"gelu_new"` are supported. hidden_dropout_prob (`float`, *optional*, defaults to 0.0): The dropout probability for all fully connected layers in the embeddings, encoder, and pooler. attention_probs_dropout_prob (`float`, *optional*, defaults to 0.0): The dropout ratio for the attention probabilities. initializer_range (`float`, *optional*, defaults to 0.02): The standard deviation of the truncated_normal_initializer for initializing all weight matrices. drop_path_rate (`float`, *optional*, defaults to 0.1): The dropout probability for stochastic depth, used in the blocks of the Transformer encoder. layer_norm_eps (`float`, *optional*, defaults to 1e-06): The epsilon used by the layer normalization layers. decoder_hidden_size (`int`, *optional*, defaults to 64): The dimension of the decoder. max_depth (`int`, *optional*, defaults to 10): The maximum depth of the decoder. head_in_index (`int`, *optional*, defaults to -1): The index of the features to use in the head. Example: ```python >>> from transformers import GLPNModel, GLPNConfig >>> # Initializing a GLPN vinvino02/glpn-kitti style configuration >>> configuration = GLPNConfig() >>> # Initializing a model from the vinvino02/glpn-kitti style configuration >>> model = GLPNModel(configuration) >>> # Accessing the model configuration >>> configuration = model.config ```""" model_type = "glpn" def __init__( self, num_channels=3, num_encoder_blocks=4, depths=[2, 2, 2, 2], sr_ratios=[8, 4, 2, 1], hidden_sizes=[32, 64, 160, 256], patch_sizes=[7, 3, 3, 3], strides=[4, 2, 2, 2], num_attention_heads=[1, 2, 5, 8], mlp_ratios=[4, 4, 4, 4], hidden_act="gelu", hidden_dropout_prob=0.0, attention_probs_dropout_prob=0.0, initializer_range=0.02, drop_path_rate=0.1, layer_norm_eps=1e-6, decoder_hidden_size=64, max_depth=10, head_in_index=-1, **kwargs, ): super().__init__(**kwargs) self.num_channels = num_channels self.num_encoder_blocks = num_encoder_blocks self.depths = depths self.sr_ratios = sr_ratios self.hidden_sizes = hidden_sizes self.patch_sizes = patch_sizes self.strides = strides self.mlp_ratios = mlp_ratios self.num_attention_heads = num_attention_heads self.hidden_act = hidden_act self.hidden_dropout_prob = hidden_dropout_prob self.attention_probs_dropout_prob = attention_probs_dropout_prob self.initializer_range = initializer_range self.drop_path_rate = drop_path_rate self.layer_norm_eps = layer_norm_eps self.decoder_hidden_size = decoder_hidden_size self.max_depth = max_depth self.head_in_index = head_in_index