# coding=utf-8 # Copyright 2022 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ GroupViT model configuration""" import os from collections import OrderedDict from typing import TYPE_CHECKING, Any, Mapping, Optional, Union from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging if TYPE_CHECKING: from ...processing_utils import ProcessorMixin from ...utils import TensorType logger = logging.get_logger(__name__) from ..deprecated._archive_maps import GROUPVIT_PRETRAINED_CONFIG_ARCHIVE_MAP # noqa: F401, E402 class GroupViTTextConfig(PretrainedConfig): r""" This is the configuration class to store the configuration of a [`GroupViTTextModel`]. It is used to instantiate an GroupViT model according to the specified arguments, defining the model architecture. Instantiating a configuration with the defaults will yield a similar configuration to that of the GroupViT [nvidia/groupvit-gcc-yfcc](https://huggingface.co/nvidia/groupvit-gcc-yfcc) architecture. Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the documentation from [`PretrainedConfig`] for more information. Args: vocab_size (`int`, *optional*, defaults to 49408): Vocabulary size of the GroupViT text model. Defines the number of different tokens that can be represented by the `inputs_ids` passed when calling [`GroupViTModel`]. hidden_size (`int`, *optional*, defaults to 256): Dimensionality of the encoder layers and the pooler layer. intermediate_size (`int`, *optional*, defaults to 1024): Dimensionality of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder. num_hidden_layers (`int`, *optional*, defaults to 12): Number of hidden layers in the Transformer encoder. num_attention_heads (`int`, *optional*, defaults to 4): Number of attention heads for each attention layer in the Transformer encoder. max_position_embeddings (`int`, *optional*, defaults to 77): The maximum sequence length that this model might ever be used with. Typically set this to something large just in case (e.g., 512 or 1024 or 2048). hidden_act (`str` or `function`, *optional*, defaults to `"quick_gelu"`): The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`, `"relu"`, `"selu"` and `"gelu_new"` ``"quick_gelu"` are supported. layer_norm_eps (`float`, *optional*, defaults to 1e-5): The epsilon used by the layer normalization layers. attention_dropout (`float`, *optional*, defaults to 0.0): The dropout ratio for the attention probabilities. dropout (`float`, *optional*, defaults to 0.0): The dropout probability for all fully connected layers in the embeddings, encoder, and pooler. initializer_range (`float`, *optional*, defaults to 0.02): The standard deviation of the truncated_normal_initializer for initializing all weight matrices. initializer_factor (`float`, *optional*, defaults to 1.0): A factor for initializing all weight matrices (should be kept to 1, used internally for initialization testing). Example: ```python >>> from transformers import GroupViTTextConfig, GroupViTTextModel >>> # Initializing a GroupViTTextModel with nvidia/groupvit-gcc-yfcc style configuration >>> configuration = GroupViTTextConfig() >>> model = GroupViTTextModel(configuration) >>> # Accessing the model configuration >>> configuration = model.config ```""" model_type = "groupvit_text_model" def __init__( self, vocab_size=49408, hidden_size=256, intermediate_size=1024, num_hidden_layers=12, num_attention_heads=4, max_position_embeddings=77, hidden_act="quick_gelu", layer_norm_eps=1e-5, dropout=0.0, attention_dropout=0.0, initializer_range=0.02, initializer_factor=1.0, pad_token_id=1, bos_token_id=49406, eos_token_id=49407, **kwargs, ): super().__init__(pad_token_id=pad_token_id, bos_token_id=bos_token_id, eos_token_id=eos_token_id, **kwargs) self.vocab_size = vocab_size self.hidden_size = hidden_size self.intermediate_size = intermediate_size self.dropout = dropout self.num_hidden_layers = num_hidden_layers self.num_attention_heads = num_attention_heads self.max_position_embeddings = max_position_embeddings self.layer_norm_eps = layer_norm_eps self.hidden_act = hidden_act self.initializer_range = initializer_range self.initializer_factor = initializer_factor self.attention_dropout = attention_dropout @classmethod def from_pretrained(cls, pretrained_model_name_or_path: Union[str, os.PathLike], **kwargs) -> "PretrainedConfig": cls._set_token_in_kwargs(kwargs) config_dict, kwargs = cls.get_config_dict(pretrained_model_name_or_path, **kwargs) # get the text config dict if we are loading from GroupViTConfig if config_dict.get("model_type") == "groupvit": config_dict = config_dict["text_config"] if "model_type" in config_dict and hasattr(cls, "model_type") and config_dict["model_type"] != cls.model_type: logger.warning( f"You are using a model of type {config_dict['model_type']} to instantiate a model of type " f"{cls.model_type}. This is not supported for all configurations of models and can yield errors." ) return cls.from_dict(config_dict, **kwargs) class GroupViTVisionConfig(PretrainedConfig): r""" This is the configuration class to store the configuration of a [`GroupViTVisionModel`]. It is used to instantiate an GroupViT model according to the specified arguments, defining the model architecture. Instantiating a configuration with the defaults will yield a similar configuration to that of the GroupViT [nvidia/groupvit-gcc-yfcc](https://huggingface.co/nvidia/groupvit-gcc-yfcc) architecture. Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the documentation from [`PretrainedConfig`] for more information. Args: hidden_size (`int`, *optional*, defaults to 384): Dimensionality of the encoder layers and the pooler layer. intermediate_size (`int`, *optional*, defaults to 1536): Dimensionality of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder. depths (`List[int]`, *optional*, defaults to [6, 3, 3]): The number of layers in each encoder block. num_group_tokens (`List[int]`, *optional*, defaults to [64, 8, 0]): The number of group tokens for each stage. num_output_groups (`List[int]`, *optional*, defaults to [64, 8, 8]): The number of output groups for each stage, 0 means no group. num_attention_heads (`int`, *optional*, defaults to 6): Number of attention heads for each attention layer in the Transformer encoder. image_size (`int`, *optional*, defaults to 224): The size (resolution) of each image. patch_size (`int`, *optional*, defaults to 16): The size (resolution) of each patch. hidden_act (`str` or `function`, *optional*, defaults to `"gelu"`): The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`, `"relu"`, `"selu"` and `"gelu_new"` ``"quick_gelu"` are supported. layer_norm_eps (`float`, *optional*, defaults to 1e-5): The epsilon used by the layer normalization layers. dropout (`float`, *optional*, defaults to 0.0): The dropout probability for all fully connected layers in the embeddings, encoder, and pooler. attention_dropout (`float`, *optional*, defaults to 0.0): The dropout ratio for the attention probabilities. initializer_range (`float`, *optional*, defaults to 0.02): The standard deviation of the truncated_normal_initializer for initializing all weight matrices. initializer_factor (`float`, *optional*, defaults to 1.0): A factor for initializing all weight matrices (should be kept to 1, used internally for initialization testing). Example: ```python >>> from transformers import GroupViTVisionConfig, GroupViTVisionModel >>> # Initializing a GroupViTVisionModel with nvidia/groupvit-gcc-yfcc style configuration >>> configuration = GroupViTVisionConfig() >>> model = GroupViTVisionModel(configuration) >>> # Accessing the model configuration >>> configuration = model.config ```""" model_type = "groupvit_vision_model" def __init__( self, hidden_size=384, intermediate_size=1536, depths=[6, 3, 3], num_hidden_layers=12, num_group_tokens=[64, 8, 0], num_output_groups=[64, 8, 8], num_attention_heads=6, image_size=224, patch_size=16, num_channels=3, hidden_act="gelu", layer_norm_eps=1e-5, dropout=0.0, attention_dropout=0.0, initializer_range=0.02, initializer_factor=1.0, assign_eps=1.0, assign_mlp_ratio=[0.5, 4], **kwargs, ): super().__init__(**kwargs) self.hidden_size = hidden_size self.intermediate_size = intermediate_size self.depths = depths if num_hidden_layers != sum(depths): logger.warning( f"Manually setting num_hidden_layers to {num_hidden_layers}, but we expect num_hidden_layers =" f" sum(depth) = {sum(depths)}" ) self.num_hidden_layers = num_hidden_layers self.num_group_tokens = num_group_tokens self.num_output_groups = num_output_groups self.num_attention_heads = num_attention_heads self.image_size = image_size self.patch_size = patch_size self.num_channels = num_channels self.hidden_act = hidden_act self.layer_norm_eps = layer_norm_eps self.dropout = dropout self.attention_dropout = attention_dropout self.initializer_range = initializer_range self.initializer_factor = initializer_factor self.assign_eps = assign_eps self.assign_mlp_ratio = assign_mlp_ratio @classmethod def from_pretrained(cls, pretrained_model_name_or_path: Union[str, os.PathLike], **kwargs) -> "PretrainedConfig": cls._set_token_in_kwargs(kwargs) config_dict, kwargs = cls.get_config_dict(pretrained_model_name_or_path, **kwargs) # get the vision config dict if we are loading from GroupViTConfig if config_dict.get("model_type") == "groupvit": config_dict = config_dict["vision_config"] if "model_type" in config_dict and hasattr(cls, "model_type") and config_dict["model_type"] != cls.model_type: logger.warning( f"You are using a model of type {config_dict['model_type']} to instantiate a model of type " f"{cls.model_type}. This is not supported for all configurations of models and can yield errors." ) return cls.from_dict(config_dict, **kwargs) class GroupViTConfig(PretrainedConfig): r""" [`GroupViTConfig`] is the configuration class to store the configuration of a [`GroupViTModel`]. It is used to instantiate a GroupViT model according to the specified arguments, defining the text model and vision model configs. Instantiating a configuration with the defaults will yield a similar configuration to that of the GroupViT [nvidia/groupvit-gcc-yfcc](https://huggingface.co/nvidia/groupvit-gcc-yfcc) architecture. Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the documentation from [`PretrainedConfig`] for more information. Args: text_config (`dict`, *optional*): Dictionary of configuration options used to initialize [`GroupViTTextConfig`]. vision_config (`dict`, *optional*): Dictionary of configuration options used to initialize [`GroupViTVisionConfig`]. projection_dim (`int`, *optional*, defaults to 256): Dimentionality of text and vision projection layers. projection_intermediate_dim (`int`, *optional*, defaults to 4096): Dimentionality of intermediate layer of text and vision projection layers. logit_scale_init_value (`float`, *optional*, defaults to 2.6592): The inital value of the *logit_scale* parameter. Default is used as per the original GroupViT implementation. kwargs (*optional*): Dictionary of keyword arguments. """ model_type = "groupvit" def __init__( self, text_config=None, vision_config=None, projection_dim=256, projection_intermediate_dim=4096, logit_scale_init_value=2.6592, **kwargs, ): # If `_config_dict` exist, we use them for the backward compatibility. # We pop out these 2 attributes before calling `super().__init__` to avoid them being saved (which causes a lot # of confusion!). text_config_dict = kwargs.pop("text_config_dict", None) vision_config_dict = kwargs.pop("vision_config_dict", None) super().__init__(**kwargs) # Instead of simply assigning `[text|vision]_config_dict` to `[text|vision]_config`, we use the values in # `[text|vision]_config_dict` to update the values in `[text|vision]_config`. The values should be same in most # cases, but we don't want to break anything regarding `_config_dict` that existed before commit `8827e1b2`. if text_config_dict is not None: if text_config is None: text_config = {} # This is the complete result when using `text_config_dict`. _text_config_dict = GroupViTTextConfig(**text_config_dict).to_dict() # Give a warning if the values exist in both `_text_config_dict` and `text_config` but being different. for key, value in _text_config_dict.items(): if key in text_config and value != text_config[key] and key not in ["transformers_version"]: # If specified in `text_config_dict` if key in text_config_dict: message = ( f"`{key}` is found in both `text_config_dict` and `text_config` but with different values. " f'The value `text_config_dict["{key}"]` will be used instead.' ) # If inferred from default argument values (just to be super careful) else: message = ( f"`text_config_dict` is provided which will be used to initialize `GroupViTTextConfig`. " f'The value `text_config["{key}"]` will be overriden.' ) logger.info(message) # Update all values in `text_config` with the ones in `_text_config_dict`. text_config.update(_text_config_dict) if vision_config_dict is not None: if vision_config is None: vision_config = {} # This is the complete result when using `vision_config_dict`. _vision_config_dict = GroupViTVisionConfig(**vision_config_dict).to_dict() # convert keys to string instead of integer if "id2label" in _vision_config_dict: _vision_config_dict["id2label"] = { str(key): value for key, value in _vision_config_dict["id2label"].items() } # Give a warning if the values exist in both `_vision_config_dict` and `vision_config` but being different. for key, value in _vision_config_dict.items(): if key in vision_config and value != vision_config[key] and key not in ["transformers_version"]: # If specified in `vision_config_dict` if key in vision_config_dict: message = ( f"`{key}` is found in both `vision_config_dict` and `vision_config` but with different " f'values. The value `vision_config_dict["{key}"]` will be used instead.' ) # If inferred from default argument values (just to be super careful) else: message = ( f"`vision_config_dict` is provided which will be used to initialize `GroupViTVisionConfig`." f' The value `vision_config["{key}"]` will be overriden.' ) logger.info(message) # Update all values in `vision_config` with the ones in `_vision_config_dict`. vision_config.update(_vision_config_dict) if text_config is None: text_config = {} logger.info("`text_config` is `None`. Initializing the `GroupViTTextConfig` with default values.") if vision_config is None: vision_config = {} logger.info("`vision_config` is `None`. initializing the `GroupViTVisionConfig` with default values.") self.text_config = GroupViTTextConfig(**text_config) self.vision_config = GroupViTVisionConfig(**vision_config) self.projection_dim = projection_dim self.projection_intermediate_dim = projection_intermediate_dim self.logit_scale_init_value = logit_scale_init_value self.initializer_range = 0.02 self.initializer_factor = 1.0 self.output_segmentation = False @classmethod def from_text_vision_configs(cls, text_config: GroupViTTextConfig, vision_config: GroupViTVisionConfig, **kwargs): r""" Instantiate a [`GroupViTConfig`] (or a derived class) from groupvit text model configuration and groupvit vision model configuration. Returns: [`GroupViTConfig`]: An instance of a configuration object """ return cls(text_config=text_config.to_dict(), vision_config=vision_config.to_dict(), **kwargs) class GroupViTOnnxConfig(OnnxConfig): @property def inputs(self) -> Mapping[str, Mapping[int, str]]: return OrderedDict( [ ("input_ids", {0: "batch", 1: "sequence"}), ("pixel_values", {0: "batch", 1: "num_channels", 2: "height", 3: "width"}), ("attention_mask", {0: "batch", 1: "sequence"}), ] ) @property def outputs(self) -> Mapping[str, Mapping[int, str]]: return OrderedDict( [ ("logits_per_image", {0: "batch"}), ("logits_per_text", {0: "batch"}), ("text_embeds", {0: "batch"}), ("image_embeds", {0: "batch"}), ] ) @property def atol_for_validation(self) -> float: return 1e-4 def generate_dummy_inputs( self, processor: "ProcessorMixin", batch_size: int = -1, seq_length: int = -1, framework: Optional["TensorType"] = None, ) -> Mapping[str, Any]: text_input_dict = super().generate_dummy_inputs( processor.tokenizer, batch_size=batch_size, seq_length=seq_length, framework=framework ) image_input_dict = super().generate_dummy_inputs( processor.image_processor, batch_size=batch_size, framework=framework ) return {**text_input_dict, **image_input_dict} @property def default_onnx_opset(self) -> int: return 14