# coding=utf-8 # Copyright 2024 The HuggingFace Inc. team. All rights reserved. # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Idefics2 model configuration""" import os from typing import Union from ...configuration_utils import PretrainedConfig from ...utils import logging from ..auto import CONFIG_MAPPING logger = logging.get_logger(__name__) class Idefics2VisionConfig(PretrainedConfig): r""" This is the configuration class to store the configuration of a [`Idefics2VisionModel`]. It is used to instantiate a Idefics2 vision encoder according to the specified arguments, defining the model architecture. Instantiating a configuration with the defaults will yield a similar configuration to that of the SigLIP checkpoint [google/siglip-base-patch16-224](https://huggingface.co/google/siglip-base-patch16-224) used in the Idefics2 model [HuggingFaceM4/idefics2-8b](https://huggingface.co/HuggingFaceM4/idefics2-8b). Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the documentation from [`PretrainedConfig`] for more information. Args: hidden_size (`int`, *optional*, defaults to 768): Dimensionality of the encoder layers and the pooler layer. intermediate_size (`int`, *optional*, defaults to 3072): Dimensionality of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder. num_hidden_layers (`int`, *optional*, defaults to 12): Number of hidden layers in the Transformer encoder. num_attention_heads (`int`, *optional*, defaults to 12): Number of attention heads for each attention layer in the Transformer encoder. num_channels (`int`, *optional*, defaults to 3): Number of channels in the input images. image_size (`int`, *optional*, defaults to 224): The size (resolution) of each image. patch_size (`int`, *optional*, defaults to 32): The size (resolution) of each patch. hidden_act (`str` or `function`, *optional*, defaults to `"gelu_pytorch_tanh"`): The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`, `"relu"`, `"selu"` and `"gelu_new"` ``"quick_gelu"` are supported. layer_norm_eps (`float`, *optional*, defaults to 1e-06): The epsilon used by the layer normalization layers. attention_dropout (`float`, *optional*, defaults to 0.0): The dropout ratio for the attention probabilities. intializer_range (`float`, *optional*, defaults to 0.02): The standard deviation for initializing all weight matrices in the model. Example: ```python >>> from transformers.models.idefics2.modeling_idefics2 import Idefics2VisionTransformer >>> from transformers.models.idefics2.configuration_idefics2 import Idefics2VisionConfig >>> # Initializing a Idefics2VisionConfig with google/siglip-base-patch16-224 style configuration >>> configuration = Idefics2VisionConfig() >>> # Initializing a Idefics2VisionTransformer (with random weights) from the google/siglip-base-patch16-224 style configuration >>> model = Idefics2VisionTransformer(configuration) >>> # Accessing the model configuration >>> configuration = model.config ```""" model_type = "idefics2" def __init__( self, hidden_size=768, intermediate_size=3072, num_hidden_layers=12, num_attention_heads=12, num_channels=3, image_size=224, patch_size=32, hidden_act="gelu_pytorch_tanh", layer_norm_eps=1e-6, attention_dropout=0.0, initializer_range=0.02, **kwargs, ): super().__init__(**kwargs) self.hidden_size = hidden_size self.intermediate_size = intermediate_size self.num_hidden_layers = num_hidden_layers self.num_attention_heads = num_attention_heads self.num_channels = num_channels self.patch_size = patch_size self.image_size = image_size self.attention_dropout = attention_dropout self.layer_norm_eps = layer_norm_eps self.hidden_act = hidden_act self.initializer_range = initializer_range @classmethod def from_pretrained(cls, pretrained_model_name_or_path: Union[str, os.PathLike], **kwargs) -> "PretrainedConfig": cls._set_token_in_kwargs(kwargs) config_dict, kwargs = cls.get_config_dict(pretrained_model_name_or_path, **kwargs) # get the vision config dict if we are loading from Idefics2Config if config_dict.get("model_type") == "idefics2": config_dict = config_dict["vision_config"] if "model_type" in config_dict and hasattr(cls, "model_type") and config_dict["model_type"] != cls.model_type: logger.warning( f"You are using a model of type {config_dict['model_type']} to instantiate a model of type " f"{cls.model_type}. This is not supported for all configurations of models and can yield errors." ) return cls.from_dict(config_dict, **kwargs) class Idefics2PerceiverConfig(PretrainedConfig): r""" Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the documentation from [`PretrainedConfig`] for more information. Args: hidden_act (`str` or `function`, *optional*, defaults to `"silu"`): The non-linear activation function (function or string) in the perceiver block. resampler_n_latents (`int`, *optional*, defaults to 64): Number of latent embeddings to resample ("compress") the input sequence to (usually < 128). resampler_depth (`int`, *optional*, defaults to 3): Depth of the Perceiver Resampler (Transformer w/ cross attention). Should be shallow (<= 3). resampler_n_heads (`int`, *optional*, defaults to 16): Number of heads in each Transformer block (for multi-headed self-attention). resampler_head_dim (`int`, *optional*, defaults to 96): Dimensionality of each head projection in the Transformer block. num_key_value_heads (`int`, *optional*, defaults to 4): Number of key-value heads in the perceiver attention block. attention_dropout (`float`, *optional*, defaults to 0.0): The dropout ratio for the attention probabilities. """ model_type = "idefics2" def __init__( self, hidden_act="silu", resampler_n_latents=64, resampler_depth=3, resampler_n_heads=16, resampler_head_dim=96, num_key_value_heads=4, attention_dropout=0.0, **kwargs, ): self.hidden_act = hidden_act self.resampler_n_latents = resampler_n_latents self.resampler_depth = resampler_depth self.resampler_n_heads = resampler_n_heads self.num_key_value_heads = num_key_value_heads self.resampler_head_dim = resampler_head_dim self.attention_dropout = attention_dropout if self.num_key_value_heads > self.resampler_n_heads: raise ValueError( f"num_key_value_heads={self.num_key_value_heads} must be less than or equal to" f" resampler_n_heads={self.resampler_n_heads}" ) super().__init__(**kwargs) class Idefics2Config(PretrainedConfig): r""" This is the configuration class to store the configuration of a [`Idefics2Model`]. It is used to instantiate a Idefics2 model according to the specified arguments, defining the model architecture. Instantiating a configuration with the defaults will yield a similar configuration to that of the model of the Idefics2 [HuggingFaceM4/idefics2-8b](https://huggingface.co/HuggingFaceM4/idefics2-8b) architecture. Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the documentation from [`PretrainedConfig`] for more information. Args: use_cache (`bool`, *optional*, defaults to `True`): Whether or not the model should cache the key/value pairs of the attention mechanism. image_token_id (`int`, *optional*, defaults to 32001): The id of the "image" token. tie_word_embeddings (`bool`, *optional*, defaults to `False`): Whether or not to tie the word embeddings with the token embeddings. vision_config (`IdeficsVisionConfig` or `dict`, *optional*): Custom vision config or dict perceiver_config (`IdeficsPerceiverConfig` or `dict`, *optional*): Custom perceiver config or dict text_config (`MistralConfig` or `dict`, *optional*): Custom text config or dict for the text model Example: ```python >>> from transformers import Idefics2Model, Idefics2Config >>> # Initializing configuration >>> configuration = Idefics2Config() >>> # Initializing a model from the configuration >>> model = Idefics2Model(configuration) >>> # Accessing the model configuration >>> configuration = model.config ```""" model_type = "idefics2" is_composition = True def __init__( self, use_cache=True, image_token_id=32_001, tie_word_embeddings=False, vision_config=None, perceiver_config=None, text_config=None, **kwargs, ): self.image_token_id = image_token_id self.use_cache = use_cache self.tie_word_embeddings = tie_word_embeddings if perceiver_config is None: self.perceiver_config = Idefics2PerceiverConfig() logger.info("perciver_config is None, using default perceiver config") elif isinstance(perceiver_config, dict): self.perceiver_config = Idefics2PerceiverConfig(**perceiver_config) elif isinstance(perceiver_config, Idefics2PerceiverConfig): self.perceiver_config = perceiver_config if vision_config is None: self.vision_config = Idefics2VisionConfig() logger.info("vision_config is None, using default vision config") elif isinstance(vision_config, dict): self.vision_config = Idefics2VisionConfig(**vision_config) elif isinstance(vision_config, Idefics2VisionConfig): self.vision_config = vision_config if isinstance(text_config, dict): text_config["model_type"] = text_config["model_type"] if "model_type" in text_config else "mistral" text_config = CONFIG_MAPPING[text_config["model_type"]](**text_config) elif text_config is None: logger.info("text_config is None, using default text config") text_config = CONFIG_MAPPING["mistral"]( max_position_embeddings=4096 * 8, rms_norm_eps=1e-5, # None in the original configuration_mistral, we set it to the unk_token_id pad_token_id=0, tie_word_embeddings=False, ) self.text_config = text_config super().__init__(**kwargs, tie_word_embeddings=tie_word_embeddings)