# coding=utf-8 # Copyright 2022 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """PyTorch LiLT model.""" import math from typing import Optional, Tuple, Union import torch import torch.utils.checkpoint from torch import nn from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss from ...activations import ACT2FN from ...modeling_outputs import ( BaseModelOutput, BaseModelOutputWithPooling, QuestionAnsweringModelOutput, SequenceClassifierOutput, TokenClassifierOutput, ) from ...modeling_utils import PreTrainedModel from ...pytorch_utils import apply_chunking_to_forward, find_pruneable_heads_and_indices, prune_linear_layer from ...utils import add_start_docstrings, add_start_docstrings_to_model_forward, logging, replace_return_docstrings from .configuration_lilt import LiltConfig logger = logging.get_logger(__name__) _CONFIG_FOR_DOC = "LiltConfig" from ..deprecated._archive_maps import LILT_PRETRAINED_MODEL_ARCHIVE_LIST # noqa: F401, E402 class LiltTextEmbeddings(nn.Module): def __init__(self, config): super().__init__() self.word_embeddings = nn.Embedding(config.vocab_size, config.hidden_size, padding_idx=config.pad_token_id) self.position_embeddings = nn.Embedding(config.max_position_embeddings, config.hidden_size) self.token_type_embeddings = nn.Embedding(config.type_vocab_size, config.hidden_size) # self.LayerNorm is not snake-cased to stick with TensorFlow model variable name and be able to load # any TensorFlow checkpoint file self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) self.dropout = nn.Dropout(config.hidden_dropout_prob) # position_ids (1, len position emb) is contiguous in memory and exported when serialized self.register_buffer( "position_ids", torch.arange(config.max_position_embeddings).expand((1, -1)), persistent=False ) self.position_embedding_type = getattr(config, "position_embedding_type", "absolute") # End copy self.padding_idx = config.pad_token_id self.position_embeddings = nn.Embedding( config.max_position_embeddings, config.hidden_size, padding_idx=self.padding_idx ) def forward( self, input_ids=None, token_type_ids=None, position_ids=None, inputs_embeds=None, ): if position_ids is None: if input_ids is not None: # Create the position ids from the input token ids. Any padded tokens remain padded. position_ids = self.create_position_ids_from_input_ids(input_ids, self.padding_idx).to( input_ids.device ) else: position_ids = self.create_position_ids_from_inputs_embeds(inputs_embeds) if input_ids is not None: input_shape = input_ids.size() else: input_shape = inputs_embeds.size()[:-1] if token_type_ids is None: token_type_ids = torch.zeros(input_shape, dtype=torch.long, device=self.position_ids.device) if inputs_embeds is None: inputs_embeds = self.word_embeddings(input_ids) token_type_embeddings = self.token_type_embeddings(token_type_ids) embeddings = inputs_embeds + token_type_embeddings if self.position_embedding_type == "absolute": position_embeddings = self.position_embeddings(position_ids) embeddings += position_embeddings embeddings = self.LayerNorm(embeddings) embeddings = self.dropout(embeddings) return embeddings, position_ids def create_position_ids_from_input_ids(self, input_ids, padding_idx): """ Args: Replace non-padding symbols with their position numbers. Position numbers begin at padding_idx+1. Padding symbols are ignored. This is modified from fairseq's `utils.make_positions`. x: torch.Tensor x: Returns: torch.Tensor """ # The series of casts and type-conversions here are carefully balanced to both work with ONNX export and XLA. mask = input_ids.ne(padding_idx).int() incremental_indices = (torch.cumsum(mask, dim=1).type_as(mask)) * mask return incremental_indices.long() + padding_idx def create_position_ids_from_inputs_embeds(self, inputs_embeds): """ Args: We are provided embeddings directly. We cannot infer which are padded so just generate sequential position ids.: inputs_embeds: torch.Tensor Returns: torch.Tensor """ input_shape = inputs_embeds.size()[:-1] sequence_length = input_shape[1] position_ids = torch.arange( self.padding_idx + 1, sequence_length + self.padding_idx + 1, dtype=torch.long, device=inputs_embeds.device ) return position_ids.unsqueeze(0).expand(input_shape) class LiltLayoutEmbeddings(nn.Module): def __init__(self, config): super().__init__() # we divide the hidden_size by 6 here as there are 6 different layout embeddings, # namely left_position, upper_position, right_position, lower_position, height, width self.x_position_embeddings = nn.Embedding(config.max_2d_position_embeddings, config.hidden_size // 6) self.y_position_embeddings = nn.Embedding(config.max_2d_position_embeddings, config.hidden_size // 6) self.h_position_embeddings = nn.Embedding(config.max_2d_position_embeddings, config.hidden_size // 6) self.w_position_embeddings = nn.Embedding(config.max_2d_position_embeddings, config.hidden_size // 6) self.padding_idx = config.pad_token_id self.box_position_embeddings = nn.Embedding( config.max_position_embeddings, config.hidden_size // config.channel_shrink_ratio, padding_idx=self.padding_idx, ) self.box_linear_embeddings = nn.Linear( in_features=config.hidden_size, out_features=config.hidden_size // config.channel_shrink_ratio ) self.LayerNorm = nn.LayerNorm(config.hidden_size // config.channel_shrink_ratio, eps=config.layer_norm_eps) self.dropout = nn.Dropout(config.hidden_dropout_prob) def forward(self, bbox=None, position_ids=None): try: left_position_embeddings = self.x_position_embeddings(bbox[:, :, 0]) upper_position_embeddings = self.y_position_embeddings(bbox[:, :, 1]) right_position_embeddings = self.x_position_embeddings(bbox[:, :, 2]) lower_position_embeddings = self.y_position_embeddings(bbox[:, :, 3]) except IndexError as e: raise IndexError("The `bbox` coordinate values should be within 0-1000 range.") from e h_position_embeddings = self.h_position_embeddings(bbox[:, :, 3] - bbox[:, :, 1]) w_position_embeddings = self.w_position_embeddings(bbox[:, :, 2] - bbox[:, :, 0]) spatial_position_embeddings = torch.cat( [ left_position_embeddings, upper_position_embeddings, right_position_embeddings, lower_position_embeddings, h_position_embeddings, w_position_embeddings, ], dim=-1, ) spatial_position_embeddings = self.box_linear_embeddings(spatial_position_embeddings) box_position_embeddings = self.box_position_embeddings(position_ids) spatial_position_embeddings = spatial_position_embeddings + box_position_embeddings spatial_position_embeddings = self.LayerNorm(spatial_position_embeddings) spatial_position_embeddings = self.dropout(spatial_position_embeddings) return spatial_position_embeddings class LiltSelfAttention(nn.Module): def __init__(self, config, position_embedding_type=None): super().__init__() if config.hidden_size % config.num_attention_heads != 0 and not hasattr(config, "embedding_size"): raise ValueError( f"The hidden size ({config.hidden_size}) is not a multiple of the number of attention " f"heads ({config.num_attention_heads})" ) self.num_attention_heads = config.num_attention_heads self.attention_head_size = int(config.hidden_size / config.num_attention_heads) self.all_head_size = self.num_attention_heads * self.attention_head_size self.query = nn.Linear(config.hidden_size, self.all_head_size) self.key = nn.Linear(config.hidden_size, self.all_head_size) self.value = nn.Linear(config.hidden_size, self.all_head_size) self.layout_query = nn.Linear( config.hidden_size // config.channel_shrink_ratio, self.all_head_size // config.channel_shrink_ratio ) self.layout_key = nn.Linear( config.hidden_size // config.channel_shrink_ratio, self.all_head_size // config.channel_shrink_ratio ) self.layout_value = nn.Linear( config.hidden_size // config.channel_shrink_ratio, self.all_head_size // config.channel_shrink_ratio ) self.dropout = nn.Dropout(config.attention_probs_dropout_prob) self.position_embedding_type = position_embedding_type or getattr( config, "position_embedding_type", "absolute" ) if self.position_embedding_type == "relative_key" or self.position_embedding_type == "relative_key_query": self.max_position_embeddings = config.max_position_embeddings self.distance_embedding = nn.Embedding(2 * config.max_position_embeddings - 1, self.attention_head_size) self.channel_shrink_ratio = config.channel_shrink_ratio def transpose_for_scores(self, x, r=1): new_x_shape = x.size()[:-1] + (self.num_attention_heads, self.attention_head_size // r) x = x.view(*new_x_shape) return x.permute(0, 2, 1, 3) def forward( self, hidden_states, layout_inputs, attention_mask=None, head_mask=None, output_attentions=False, ): layout_value_layer = self.transpose_for_scores(self.layout_value(layout_inputs), r=self.channel_shrink_ratio) layout_key_layer = self.transpose_for_scores(self.layout_key(layout_inputs), r=self.channel_shrink_ratio) layout_query_layer = self.transpose_for_scores(self.layout_query(layout_inputs), r=self.channel_shrink_ratio) mixed_query_layer = self.query(hidden_states) key_layer = self.transpose_for_scores(self.key(hidden_states)) value_layer = self.transpose_for_scores(self.value(hidden_states)) query_layer = self.transpose_for_scores(mixed_query_layer) attention_scores = torch.matmul(query_layer, key_layer.transpose(-1, -2)) layout_attention_scores = torch.matmul(layout_query_layer, layout_key_layer.transpose(-1, -2)) if self.position_embedding_type == "relative_key" or self.position_embedding_type == "relative_key_query": seq_length = hidden_states.size()[1] position_ids_l = torch.arange(seq_length, dtype=torch.long, device=hidden_states.device).view(-1, 1) position_ids_r = torch.arange(seq_length, dtype=torch.long, device=hidden_states.device).view(1, -1) distance = position_ids_l - position_ids_r positional_embedding = self.distance_embedding(distance + self.max_position_embeddings - 1) positional_embedding = positional_embedding.to(dtype=query_layer.dtype) # fp16 compatibility if self.position_embedding_type == "relative_key": relative_position_scores = torch.einsum("bhld,lrd->bhlr", query_layer, positional_embedding) attention_scores = attention_scores + relative_position_scores elif self.position_embedding_type == "relative_key_query": relative_position_scores_query = torch.einsum("bhld,lrd->bhlr", query_layer, positional_embedding) relative_position_scores_key = torch.einsum("bhrd,lrd->bhlr", key_layer, positional_embedding) attention_scores = attention_scores + relative_position_scores_query + relative_position_scores_key tmp_attention_scores = attention_scores / math.sqrt(self.attention_head_size) tmp_layout_attention_scores = layout_attention_scores / math.sqrt( self.attention_head_size // self.channel_shrink_ratio ) attention_scores = tmp_attention_scores + tmp_layout_attention_scores layout_attention_scores = tmp_layout_attention_scores + tmp_attention_scores if attention_mask is not None: # Apply the attention mask is (precomputed for all layers in BertModel forward() function) layout_attention_scores = layout_attention_scores + attention_mask # Normalize the attention scores to probabilities. layout_attention_probs = nn.Softmax(dim=-1)(layout_attention_scores) # This is actually dropping out entire tokens to attend to, which might # seem a bit unusual, but is taken from the original Transformer paper. layout_attention_probs = self.dropout(layout_attention_probs) # Mask heads if we want to if head_mask is not None: layout_attention_probs = layout_attention_probs * head_mask layout_context_layer = torch.matmul(layout_attention_probs, layout_value_layer) layout_context_layer = layout_context_layer.permute(0, 2, 1, 3).contiguous() new_context_layer_shape = layout_context_layer.size()[:-2] + (self.all_head_size // self.channel_shrink_ratio,) layout_context_layer = layout_context_layer.view(*new_context_layer_shape) if attention_mask is not None: # Apply the attention mask is (precomputed for all layers in RobertaModel forward() function) attention_scores = attention_scores + attention_mask # Normalize the attention scores to probabilities. attention_probs = nn.Softmax(dim=-1)(attention_scores) # This is actually dropping out entire tokens to attend to, which might # seem a bit unusual, but is taken from the original Transformer paper. attention_probs = self.dropout(attention_probs) # Mask heads if we want to if head_mask is not None: attention_probs = attention_probs * head_mask context_layer = torch.matmul(attention_probs, value_layer) context_layer = context_layer.permute(0, 2, 1, 3).contiguous() new_context_layer_shape = context_layer.size()[:-2] + (self.all_head_size,) context_layer = context_layer.view(*new_context_layer_shape) outputs = ( ((context_layer, layout_context_layer), attention_probs) if output_attentions else ((context_layer, layout_context_layer),) ) return outputs # Copied from transformers.models.bert.modeling_bert.BertSelfOutput class LiltSelfOutput(nn.Module): def __init__(self, config): super().__init__() self.dense = nn.Linear(config.hidden_size, config.hidden_size) self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) self.dropout = nn.Dropout(config.hidden_dropout_prob) def forward(self, hidden_states: torch.Tensor, input_tensor: torch.Tensor) -> torch.Tensor: hidden_states = self.dense(hidden_states) hidden_states = self.dropout(hidden_states) hidden_states = self.LayerNorm(hidden_states + input_tensor) return hidden_states class LiltAttention(nn.Module): def __init__(self, config, position_embedding_type=None): super().__init__() self.self = LiltSelfAttention(config, position_embedding_type=position_embedding_type) self.output = LiltSelfOutput(config) self.pruned_heads = set() ori_hidden_size = config.hidden_size config.hidden_size = config.hidden_size // config.channel_shrink_ratio self.layout_output = LiltSelfOutput(config) config.hidden_size = ori_hidden_size # Copied from transformers.models.bert.modeling_bert.BertAttention.prune_heads def prune_heads(self, heads): if len(heads) == 0: return heads, index = find_pruneable_heads_and_indices( heads, self.self.num_attention_heads, self.self.attention_head_size, self.pruned_heads ) # Prune linear layers self.self.query = prune_linear_layer(self.self.query, index) self.self.key = prune_linear_layer(self.self.key, index) self.self.value = prune_linear_layer(self.self.value, index) self.output.dense = prune_linear_layer(self.output.dense, index, dim=1) # Update hyper params and store pruned heads self.self.num_attention_heads = self.self.num_attention_heads - len(heads) self.self.all_head_size = self.self.attention_head_size * self.self.num_attention_heads self.pruned_heads = self.pruned_heads.union(heads) def forward( self, hidden_states: torch.Tensor, layout_inputs: torch.Tensor, attention_mask: Optional[torch.FloatTensor] = None, head_mask: Optional[torch.FloatTensor] = None, output_attentions: Optional[bool] = False, ) -> Tuple[torch.Tensor]: self_outputs = self.self( hidden_states, layout_inputs, attention_mask, head_mask, output_attentions, ) attention_output = self.output(self_outputs[0][0], hidden_states) layout_attention_output = self.layout_output(self_outputs[0][1], layout_inputs) outputs = ((attention_output, layout_attention_output),) + self_outputs[1:] # add attentions if we output them return outputs # Copied from transformers.models.bert.modeling_bert.BertIntermediate class LiltIntermediate(nn.Module): def __init__(self, config): super().__init__() self.dense = nn.Linear(config.hidden_size, config.intermediate_size) if isinstance(config.hidden_act, str): self.intermediate_act_fn = ACT2FN[config.hidden_act] else: self.intermediate_act_fn = config.hidden_act def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: hidden_states = self.dense(hidden_states) hidden_states = self.intermediate_act_fn(hidden_states) return hidden_states # Copied from transformers.models.bert.modeling_bert.BertOutput class LiltOutput(nn.Module): def __init__(self, config): super().__init__() self.dense = nn.Linear(config.intermediate_size, config.hidden_size) self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) self.dropout = nn.Dropout(config.hidden_dropout_prob) def forward(self, hidden_states: torch.Tensor, input_tensor: torch.Tensor) -> torch.Tensor: hidden_states = self.dense(hidden_states) hidden_states = self.dropout(hidden_states) hidden_states = self.LayerNorm(hidden_states + input_tensor) return hidden_states class LiltLayer(nn.Module): def __init__(self, config): super().__init__() self.chunk_size_feed_forward = config.chunk_size_feed_forward self.seq_len_dim = 1 self.attention = LiltAttention(config) self.intermediate = LiltIntermediate(config) self.output = LiltOutput(config) ori_hidden_size = config.hidden_size ori_intermediate_size = config.intermediate_size config.hidden_size = config.hidden_size // config.channel_shrink_ratio config.intermediate_size = config.intermediate_size // config.channel_shrink_ratio self.layout_intermediate = LiltIntermediate(config) self.layout_output = LiltOutput(config) config.hidden_size = ori_hidden_size config.intermediate_size = ori_intermediate_size def forward( self, hidden_states: torch.Tensor, layout_inputs: torch.Tensor, attention_mask: Optional[torch.FloatTensor] = None, head_mask: Optional[torch.FloatTensor] = None, output_attentions: Optional[bool] = False, ) -> Tuple[torch.Tensor]: self_attention_outputs = self.attention( hidden_states, layout_inputs, attention_mask, head_mask, output_attentions=output_attentions, ) attention_output = self_attention_outputs[0][0] layout_attention_output = self_attention_outputs[0][1] outputs = self_attention_outputs[1:] # add self attentions if we output attention weights layer_output = apply_chunking_to_forward( self.feed_forward_chunk, self.chunk_size_feed_forward, self.seq_len_dim, attention_output ) layout_layer_output = apply_chunking_to_forward( self.layout_feed_forward_chunk, self.chunk_size_feed_forward, self.seq_len_dim, layout_attention_output ) outputs = ((layer_output, layout_layer_output),) + outputs return outputs # Copied from transformers.models.bert.modeling_bert.BertLayer.feed_forward_chunk def feed_forward_chunk(self, attention_output): intermediate_output = self.intermediate(attention_output) layer_output = self.output(intermediate_output, attention_output) return layer_output def layout_feed_forward_chunk(self, attention_output): intermediate_output = self.layout_intermediate(attention_output) layer_output = self.layout_output(intermediate_output, attention_output) return layer_output class LiltEncoder(nn.Module): # Copied from transformers.models.bert.modeling_bert.BertEncoder.__init__ with Bert->Lilt def __init__(self, config): super().__init__() self.config = config self.layer = nn.ModuleList([LiltLayer(config) for _ in range(config.num_hidden_layers)]) self.gradient_checkpointing = False def forward( self, hidden_states: torch.Tensor, layout_inputs: torch.Tensor, attention_mask: Optional[torch.FloatTensor] = None, head_mask: Optional[torch.FloatTensor] = None, output_attentions: Optional[bool] = False, output_hidden_states: Optional[bool] = False, return_dict: Optional[bool] = True, ) -> Union[Tuple[torch.Tensor], BaseModelOutput]: all_hidden_states = () if output_hidden_states else None all_self_attentions = () if output_attentions else None for i, layer_module in enumerate(self.layer): if output_hidden_states: all_hidden_states = all_hidden_states + (hidden_states,) layer_head_mask = head_mask[i] if head_mask is not None else None if self.gradient_checkpointing and self.training: layer_outputs = self._gradient_checkpointing_func( layer_module.__call__, hidden_states, layout_inputs, attention_mask, layer_head_mask, output_attentions, ) else: layer_outputs = layer_module( hidden_states, layout_inputs, attention_mask, layer_head_mask, output_attentions, ) hidden_states = layer_outputs[0][0] layout_inputs = layer_outputs[0][1] if output_attentions: all_self_attentions = all_self_attentions + (layer_outputs[1],) if output_hidden_states: all_hidden_states = all_hidden_states + (hidden_states,) if not return_dict: return tuple( v for v in [ hidden_states, all_hidden_states, all_self_attentions, ] if v is not None ) return BaseModelOutput( last_hidden_state=hidden_states, hidden_states=all_hidden_states, attentions=all_self_attentions, ) # Copied from transformers.models.bert.modeling_bert.BertPooler class LiltPooler(nn.Module): def __init__(self, config): super().__init__() self.dense = nn.Linear(config.hidden_size, config.hidden_size) self.activation = nn.Tanh() def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: # We "pool" the model by simply taking the hidden state corresponding # to the first token. first_token_tensor = hidden_states[:, 0] pooled_output = self.dense(first_token_tensor) pooled_output = self.activation(pooled_output) return pooled_output class LiltPreTrainedModel(PreTrainedModel): """ An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained models. """ config_class = LiltConfig base_model_prefix = "lilt" supports_gradient_checkpointing = True _no_split_modules = [] # Copied from transformers.models.bert.modeling_bert.BertPreTrainedModel._init_weights def _init_weights(self, module): """Initialize the weights""" if isinstance(module, nn.Linear): # Slightly different from the TF version which uses truncated_normal for initialization # cf https://github.com/pytorch/pytorch/pull/5617 module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) if module.bias is not None: module.bias.data.zero_() elif isinstance(module, nn.Embedding): module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) if module.padding_idx is not None: module.weight.data[module.padding_idx].zero_() elif isinstance(module, nn.LayerNorm): module.bias.data.zero_() module.weight.data.fill_(1.0) LILT_START_DOCSTRING = r""" This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads etc.) This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior. Parameters: config ([`LiltConfig`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. """ LILT_INPUTS_DOCSTRING = r""" Args: input_ids (`torch.LongTensor` of shape `({0})`): Indices of input sequence tokens in the vocabulary. Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for details. [What are input IDs?](../glossary#input-ids) bbox (`torch.LongTensor` of shape `({0}, 4)`, *optional*): Bounding boxes of each input sequence tokens. Selected in the range `[0, config.max_2d_position_embeddings-1]`. Each bounding box should be a normalized version in (x0, y0, x1, y1) format, where (x0, y0) corresponds to the position of the upper left corner in the bounding box, and (x1, y1) represents the position of the lower right corner. See [Overview](#Overview) for normalization. attention_mask (`torch.FloatTensor` of shape `({0})`, *optional*): Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. [What are attention masks?](../glossary#attention-mask) token_type_ids (`torch.LongTensor` of shape `({0})`, *optional*): Segment token indices to indicate first and second portions of the inputs. Indices are selected in `[0, 1]`: - 0 corresponds to a *sentence A* token, - 1 corresponds to a *sentence B* token. [What are token type IDs?](../glossary#token-type-ids) position_ids (`torch.LongTensor` of shape `({0})`, *optional*): Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0, config.max_position_embeddings - 1]`. [What are position IDs?](../glossary#position-ids) head_mask (`torch.FloatTensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*): Mask to nullify selected heads of the self-attention modules. Mask values selected in `[0, 1]`: - 1 indicates the head is **not masked**, - 0 indicates the head is **masked**. inputs_embeds (`torch.FloatTensor` of shape `({0}, hidden_size)`, *optional*): Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This is useful if you want more control over how to convert `input_ids` indices into associated vectors than the model's internal embedding lookup matrix. output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. """ @add_start_docstrings( "The bare LiLT Model transformer outputting raw hidden-states without any specific head on top.", LILT_START_DOCSTRING, ) class LiltModel(LiltPreTrainedModel): def __init__(self, config, add_pooling_layer=True): super().__init__(config) self.config = config self.embeddings = LiltTextEmbeddings(config) self.layout_embeddings = LiltLayoutEmbeddings(config) self.encoder = LiltEncoder(config) self.pooler = LiltPooler(config) if add_pooling_layer else None # Initialize weights and apply final processing self.post_init() def get_input_embeddings(self): return self.embeddings.word_embeddings def set_input_embeddings(self, value): self.embeddings.word_embeddings = value def _prune_heads(self, heads_to_prune): """ Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base class PreTrainedModel """ for layer, heads in heads_to_prune.items(): self.encoder.layer[layer].attention.prune_heads(heads) @add_start_docstrings_to_model_forward(LILT_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @replace_return_docstrings(output_type=BaseModelOutputWithPooling, config_class=_CONFIG_FOR_DOC) def forward( self, input_ids: Optional[torch.Tensor] = None, bbox: Optional[torch.Tensor] = None, attention_mask: Optional[torch.Tensor] = None, token_type_ids: Optional[torch.Tensor] = None, position_ids: Optional[torch.Tensor] = None, head_mask: Optional[torch.Tensor] = None, inputs_embeds: Optional[torch.Tensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple[torch.Tensor], BaseModelOutputWithPooling]: r""" Returns: Examples: ```python >>> from transformers import AutoTokenizer, AutoModel >>> from datasets import load_dataset >>> tokenizer = AutoTokenizer.from_pretrained("SCUT-DLVCLab/lilt-roberta-en-base") >>> model = AutoModel.from_pretrained("SCUT-DLVCLab/lilt-roberta-en-base") >>> dataset = load_dataset("nielsr/funsd-layoutlmv3", split="train") >>> example = dataset[0] >>> words = example["tokens"] >>> boxes = example["bboxes"] >>> encoding = tokenizer(words, boxes=boxes, return_tensors="pt") >>> outputs = model(**encoding) >>> last_hidden_states = outputs.last_hidden_state ```""" output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.use_return_dict if input_ids is not None and inputs_embeds is not None: raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time") elif input_ids is not None: self.warn_if_padding_and_no_attention_mask(input_ids, attention_mask) input_shape = input_ids.size() elif inputs_embeds is not None: input_shape = inputs_embeds.size()[:-1] else: raise ValueError("You have to specify either input_ids or inputs_embeds") batch_size, seq_length = input_shape device = input_ids.device if input_ids is not None else inputs_embeds.device if bbox is None: bbox = torch.zeros(input_shape + (4,), dtype=torch.long, device=device) if attention_mask is None: attention_mask = torch.ones(((batch_size, seq_length)), device=device) if token_type_ids is None: if hasattr(self.embeddings, "token_type_ids"): buffered_token_type_ids = self.embeddings.token_type_ids[:, :seq_length] buffered_token_type_ids_expanded = buffered_token_type_ids.expand(batch_size, seq_length) token_type_ids = buffered_token_type_ids_expanded else: token_type_ids = torch.zeros(input_shape, dtype=torch.long, device=device) # We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length] # ourselves in which case we just need to make it broadcastable to all heads. extended_attention_mask: torch.Tensor = self.get_extended_attention_mask(attention_mask, input_shape) # Prepare head mask if needed # 1.0 in head_mask indicate we keep the head # attention_probs has shape bsz x n_heads x N x N # input head_mask has shape [num_heads] or [num_hidden_layers x num_heads] # and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length] head_mask = self.get_head_mask(head_mask, self.config.num_hidden_layers) embedding_output, position_ids = self.embeddings( input_ids=input_ids, position_ids=position_ids, token_type_ids=token_type_ids, inputs_embeds=inputs_embeds, ) layout_embedding_output = self.layout_embeddings(bbox=bbox, position_ids=position_ids) encoder_outputs = self.encoder( embedding_output, layout_embedding_output, attention_mask=extended_attention_mask, head_mask=head_mask, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) sequence_output = encoder_outputs[0] pooled_output = self.pooler(sequence_output) if self.pooler is not None else None if not return_dict: return (sequence_output, pooled_output) + encoder_outputs[1:] return BaseModelOutputWithPooling( last_hidden_state=sequence_output, pooler_output=pooled_output, hidden_states=encoder_outputs.hidden_states, attentions=encoder_outputs.attentions, ) @add_start_docstrings( """ LiLT Model transformer with a sequence classification/regression head on top (a linear layer on top of the pooled output) e.g. for GLUE tasks. """, LILT_START_DOCSTRING, ) class LiltForSequenceClassification(LiltPreTrainedModel): # Copied from transformers.models.roberta.modeling_roberta.RobertaForSequenceClassification.__init__ with Roberta->Lilt, roberta->lilt def __init__(self, config): super().__init__(config) self.num_labels = config.num_labels self.config = config self.lilt = LiltModel(config, add_pooling_layer=False) self.classifier = LiltClassificationHead(config) # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(LILT_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @replace_return_docstrings(output_type=SequenceClassifierOutput, config_class=_CONFIG_FOR_DOC) def forward( self, input_ids: Optional[torch.LongTensor] = None, bbox: Optional[torch.Tensor] = None, attention_mask: Optional[torch.FloatTensor] = None, token_type_ids: Optional[torch.LongTensor] = None, position_ids: Optional[torch.LongTensor] = None, head_mask: Optional[torch.FloatTensor] = None, inputs_embeds: Optional[torch.FloatTensor] = None, labels: Optional[torch.LongTensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple[torch.Tensor], SequenceClassifierOutput]: r""" labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*): Labels for computing the sequence classification/regression loss. Indices should be in `[0, ..., config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If `config.num_labels > 1` a classification loss is computed (Cross-Entropy). Returns: Examples: ```python >>> from transformers import AutoTokenizer, AutoModelForSequenceClassification >>> from datasets import load_dataset >>> tokenizer = AutoTokenizer.from_pretrained("SCUT-DLVCLab/lilt-roberta-en-base") >>> model = AutoModelForSequenceClassification.from_pretrained("SCUT-DLVCLab/lilt-roberta-en-base") >>> dataset = load_dataset("nielsr/funsd-layoutlmv3", split="train") >>> example = dataset[0] >>> words = example["tokens"] >>> boxes = example["bboxes"] >>> encoding = tokenizer(words, boxes=boxes, return_tensors="pt") >>> outputs = model(**encoding) >>> predicted_class_idx = outputs.logits.argmax(-1).item() >>> predicted_class = model.config.id2label[predicted_class_idx] ```""" return_dict = return_dict if return_dict is not None else self.config.use_return_dict outputs = self.lilt( input_ids, bbox=bbox, attention_mask=attention_mask, token_type_ids=token_type_ids, position_ids=position_ids, head_mask=head_mask, inputs_embeds=inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) sequence_output = outputs[0] logits = self.classifier(sequence_output) loss = None if labels is not None: # move labels to correct device to enable model parallelism labels = labels.to(logits.device) if self.config.problem_type is None: if self.num_labels == 1: self.config.problem_type = "regression" elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): self.config.problem_type = "single_label_classification" else: self.config.problem_type = "multi_label_classification" if self.config.problem_type == "regression": loss_fct = MSELoss() if self.num_labels == 1: loss = loss_fct(logits.squeeze(), labels.squeeze()) else: loss = loss_fct(logits, labels) elif self.config.problem_type == "single_label_classification": loss_fct = CrossEntropyLoss() loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1)) elif self.config.problem_type == "multi_label_classification": loss_fct = BCEWithLogitsLoss() loss = loss_fct(logits, labels) if not return_dict: output = (logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return SequenceClassifierOutput( loss=loss, logits=logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions, ) @add_start_docstrings( """ Lilt Model with a token classification head on top (a linear layer on top of the hidden-states output) e.g. for Named-Entity-Recognition (NER) tasks. """, LILT_START_DOCSTRING, ) class LiltForTokenClassification(LiltPreTrainedModel): # Copied from transformers.models.roberta.modeling_roberta.RobertaForTokenClassification.__init__ with Roberta->Lilt, roberta->lilt def __init__(self, config): super().__init__(config) self.num_labels = config.num_labels self.lilt = LiltModel(config, add_pooling_layer=False) classifier_dropout = ( config.classifier_dropout if config.classifier_dropout is not None else config.hidden_dropout_prob ) self.dropout = nn.Dropout(classifier_dropout) self.classifier = nn.Linear(config.hidden_size, config.num_labels) # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(LILT_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @replace_return_docstrings(output_type=TokenClassifierOutput, config_class=_CONFIG_FOR_DOC) def forward( self, input_ids: Optional[torch.LongTensor] = None, bbox: Optional[torch.LongTensor] = None, attention_mask: Optional[torch.FloatTensor] = None, token_type_ids: Optional[torch.LongTensor] = None, position_ids: Optional[torch.LongTensor] = None, head_mask: Optional[torch.FloatTensor] = None, inputs_embeds: Optional[torch.FloatTensor] = None, labels: Optional[torch.LongTensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple[torch.Tensor], TokenClassifierOutput]: r""" labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): Labels for computing the token classification loss. Indices should be in `[0, ..., config.num_labels - 1]`. Returns: Examples: ```python >>> from transformers import AutoTokenizer, AutoModelForTokenClassification >>> from datasets import load_dataset >>> tokenizer = AutoTokenizer.from_pretrained("SCUT-DLVCLab/lilt-roberta-en-base") >>> model = AutoModelForTokenClassification.from_pretrained("SCUT-DLVCLab/lilt-roberta-en-base") >>> dataset = load_dataset("nielsr/funsd-layoutlmv3", split="train") >>> example = dataset[0] >>> words = example["tokens"] >>> boxes = example["bboxes"] >>> encoding = tokenizer(words, boxes=boxes, return_tensors="pt") >>> outputs = model(**encoding) >>> predicted_class_indices = outputs.logits.argmax(-1) ```""" return_dict = return_dict if return_dict is not None else self.config.use_return_dict outputs = self.lilt( input_ids, bbox=bbox, attention_mask=attention_mask, token_type_ids=token_type_ids, position_ids=position_ids, head_mask=head_mask, inputs_embeds=inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) sequence_output = outputs[0] sequence_output = self.dropout(sequence_output) logits = self.classifier(sequence_output) loss = None if labels is not None: # move labels to correct device to enable model parallelism labels = labels.to(logits.device) loss_fct = CrossEntropyLoss() loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1)) if not return_dict: output = (logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return TokenClassifierOutput( loss=loss, logits=logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions, ) # Copied from transformers.models.roberta.modeling_roberta.RobertaClassificationHead with Roberta->Lilt class LiltClassificationHead(nn.Module): """Head for sentence-level classification tasks.""" def __init__(self, config): super().__init__() self.dense = nn.Linear(config.hidden_size, config.hidden_size) classifier_dropout = ( config.classifier_dropout if config.classifier_dropout is not None else config.hidden_dropout_prob ) self.dropout = nn.Dropout(classifier_dropout) self.out_proj = nn.Linear(config.hidden_size, config.num_labels) def forward(self, features, **kwargs): x = features[:, 0, :] # take token (equiv. to [CLS]) x = self.dropout(x) x = self.dense(x) x = torch.tanh(x) x = self.dropout(x) x = self.out_proj(x) return x @add_start_docstrings( """ Lilt Model with a span classification head on top for extractive question-answering tasks like SQuAD (a linear layers on top of the hidden-states output to compute `span start logits` and `span end logits`). """, LILT_START_DOCSTRING, ) class LiltForQuestionAnswering(LiltPreTrainedModel): # Copied from transformers.models.roberta.modeling_roberta.RobertaForQuestionAnswering.__init__ with Roberta->Lilt, roberta->lilt def __init__(self, config): super().__init__(config) self.num_labels = config.num_labels self.lilt = LiltModel(config, add_pooling_layer=False) self.qa_outputs = nn.Linear(config.hidden_size, config.num_labels) # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(LILT_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @replace_return_docstrings(output_type=QuestionAnsweringModelOutput, config_class=_CONFIG_FOR_DOC) def forward( self, input_ids: Optional[torch.LongTensor] = None, bbox: Optional[torch.LongTensor] = None, attention_mask: Optional[torch.FloatTensor] = None, token_type_ids: Optional[torch.LongTensor] = None, position_ids: Optional[torch.LongTensor] = None, head_mask: Optional[torch.FloatTensor] = None, inputs_embeds: Optional[torch.FloatTensor] = None, start_positions: Optional[torch.LongTensor] = None, end_positions: Optional[torch.LongTensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple[torch.Tensor], QuestionAnsweringModelOutput]: r""" start_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*): Labels for position (index) of the start of the labelled span for computing the token classification loss. Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence are not taken into account for computing the loss. end_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*): Labels for position (index) of the end of the labelled span for computing the token classification loss. Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence are not taken into account for computing the loss. Returns: Examples: ```python >>> from transformers import AutoTokenizer, AutoModelForQuestionAnswering >>> from datasets import load_dataset >>> tokenizer = AutoTokenizer.from_pretrained("SCUT-DLVCLab/lilt-roberta-en-base") >>> model = AutoModelForQuestionAnswering.from_pretrained("SCUT-DLVCLab/lilt-roberta-en-base") >>> dataset = load_dataset("nielsr/funsd-layoutlmv3", split="train") >>> example = dataset[0] >>> words = example["tokens"] >>> boxes = example["bboxes"] >>> encoding = tokenizer(words, boxes=boxes, return_tensors="pt") >>> outputs = model(**encoding) >>> answer_start_index = outputs.start_logits.argmax() >>> answer_end_index = outputs.end_logits.argmax() >>> predict_answer_tokens = encoding.input_ids[0, answer_start_index : answer_end_index + 1] >>> predicted_answer = tokenizer.decode(predict_answer_tokens) ```""" return_dict = return_dict if return_dict is not None else self.config.use_return_dict outputs = self.lilt( input_ids, bbox=bbox, attention_mask=attention_mask, token_type_ids=token_type_ids, position_ids=position_ids, head_mask=head_mask, inputs_embeds=inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) sequence_output = outputs[0] logits = self.qa_outputs(sequence_output) start_logits, end_logits = logits.split(1, dim=-1) start_logits = start_logits.squeeze(-1).contiguous() end_logits = end_logits.squeeze(-1).contiguous() total_loss = None if start_positions is not None and end_positions is not None: # If we are on multi-GPU, split add a dimension if len(start_positions.size()) > 1: start_positions = start_positions.squeeze(-1) if len(end_positions.size()) > 1: end_positions = end_positions.squeeze(-1) # sometimes the start/end positions are outside our model inputs, we ignore these terms ignored_index = start_logits.size(1) start_positions = start_positions.clamp(0, ignored_index) end_positions = end_positions.clamp(0, ignored_index) loss_fct = CrossEntropyLoss(ignore_index=ignored_index) start_loss = loss_fct(start_logits, start_positions) end_loss = loss_fct(end_logits, end_positions) total_loss = (start_loss + end_loss) / 2 if not return_dict: output = (start_logits, end_logits) + outputs[2:] return ((total_loss,) + output) if total_loss is not None else output return QuestionAnsweringModelOutput( loss=total_loss, start_logits=start_logits, end_logits=end_logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions, )