# coding=utf-8 # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ MRA model configuration""" from ...configuration_utils import PretrainedConfig from ...utils import logging logger = logging.get_logger(__name__) from ..deprecated._archive_maps import MRA_PRETRAINED_CONFIG_ARCHIVE_MAP # noqa: F401, E402 class MraConfig(PretrainedConfig): r""" This is the configuration class to store the configuration of a [`MraModel`]. It is used to instantiate an MRA model according to the specified arguments, defining the model architecture. Instantiating a configuration with the defaults will yield a similar configuration to that of the Mra [uw-madison/mra-base-512-4](https://huggingface.co/uw-madison/mra-base-512-4) architecture. Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the documentation from [`PretrainedConfig`] for more information. Args: vocab_size (`int`, *optional*, defaults to 50265): Vocabulary size of the Mra model. Defines the number of different tokens that can be represented by the `inputs_ids` passed when calling [`MraModel`]. hidden_size (`int`, *optional*, defaults to 768): Dimension of the encoder layers and the pooler layer. num_hidden_layers (`int`, *optional*, defaults to 12): Number of hidden layers in the Transformer encoder. num_attention_heads (`int`, *optional*, defaults to 12): Number of attention heads for each attention layer in the Transformer encoder. intermediate_size (`int`, *optional*, defaults to 3072): Dimension of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder. hidden_act (`str` or `function`, *optional*, defaults to `"gelu"`): The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`, `"relu"`, `"selu"` and `"gelu_new"` are supported. hidden_dropout_prob (`float`, *optional*, defaults to 0.1): The dropout probability for all fully connected layers in the embeddings, encoder, and pooler. attention_probs_dropout_prob (`float`, *optional*, defaults to 0.1): The dropout ratio for the attention probabilities. max_position_embeddings (`int`, *optional*, defaults to 512): The maximum sequence length that this model might ever be used with. Typically set this to something large just in case (e.g., 512 or 1024 or 2048). type_vocab_size (`int`, *optional*, defaults to 1): The vocabulary size of the `token_type_ids` passed when calling [`MraModel`]. initializer_range (`float`, *optional*, defaults to 0.02): The standard deviation of the truncated_normal_initializer for initializing all weight matrices. layer_norm_eps (`float`, *optional*, defaults to 1e-5): The epsilon used by the layer normalization layers. position_embedding_type (`str`, *optional*, defaults to `"absolute"`): Type of position embedding. Choose one of `"absolute"`, `"relative_key"`, `"relative_key_query"`. block_per_row (`int`, *optional*, defaults to 4): Used to set the budget for the high resolution scale. approx_mode (`str`, *optional*, defaults to `"full"`): Controls whether both low and high resolution approximations are used. Set to `"full"` for both low and high resolution and `"sparse"` for only low resolution. initial_prior_first_n_blocks (`int`, *optional*, defaults to 0): The initial number of blocks for which high resolution is used. initial_prior_diagonal_n_blocks (`int`, *optional*, defaults to 0): The number of diagonal blocks for which high resolution is used. Example: ```python >>> from transformers import MraConfig, MraModel >>> # Initializing a Mra uw-madison/mra-base-512-4 style configuration >>> configuration = MraConfig() >>> # Initializing a model (with random weights) from the uw-madison/mra-base-512-4 style configuration >>> model = MraModel(configuration) >>> # Accessing the model configuration >>> configuration = model.config ```""" model_type = "mra" def __init__( self, vocab_size=50265, hidden_size=768, num_hidden_layers=12, num_attention_heads=12, intermediate_size=3072, hidden_act="gelu", hidden_dropout_prob=0.1, attention_probs_dropout_prob=0.1, max_position_embeddings=512, type_vocab_size=1, initializer_range=0.02, layer_norm_eps=1e-5, position_embedding_type="absolute", block_per_row=4, approx_mode="full", initial_prior_first_n_blocks=0, initial_prior_diagonal_n_blocks=0, pad_token_id=1, bos_token_id=0, eos_token_id=2, **kwargs, ): super().__init__(pad_token_id=pad_token_id, bos_token_id=bos_token_id, eos_token_id=eos_token_id, **kwargs) self.vocab_size = vocab_size self.max_position_embeddings = max_position_embeddings self.hidden_size = hidden_size self.num_hidden_layers = num_hidden_layers self.num_attention_heads = num_attention_heads self.intermediate_size = intermediate_size self.hidden_act = hidden_act self.hidden_dropout_prob = hidden_dropout_prob self.attention_probs_dropout_prob = attention_probs_dropout_prob self.initializer_range = initializer_range self.type_vocab_size = type_vocab_size self.layer_norm_eps = layer_norm_eps self.position_embedding_type = position_embedding_type self.block_per_row = block_per_row self.approx_mode = approx_mode self.initial_prior_first_n_blocks = initial_prior_first_n_blocks self.initial_prior_diagonal_n_blocks = initial_prior_diagonal_n_blocks