# coding=utf-8 # Copyright 2021 The HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Tokenization class for Perceiver.""" from typing import Dict, List, Optional, Tuple from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging logger = logging.get_logger(__name__) class PerceiverTokenizer(PreTrainedTokenizer): """ Construct a Perceiver tokenizer. The Perceiver simply uses raw bytes utf-8 encoding. This tokenizer inherits from [`PreTrainedTokenizer`] which contains most of the main methods. Users should refer to this superclass for more information regarding those methods. Args: pad_token (`str`, *optional*, defaults to `"[PAD]"`): The token used for padding, for example when batching sequences of different lengths. bos_token (`str`, *optional*, defaults to `"[BOS]"`): The BOS token (reserved in the vocab, but not actually used). eos_token (`str`, *optional*, defaults to `"[EOS]"`): The end of sequence token (reserved in the vocab, but not actually used). When building a sequence using special tokens, this is not the token that is used for the end of sequence. The token used is the `sep_token`. mask_token (`str`, *optional*, defaults to `"[MASK]"`): The MASK token, useful for masked language modeling. cls_token (`str`, *optional*, defaults to `"[CLS]"`): The CLS token (reserved in the vocab, but not actually used). sep_token (`str`, *optional*, defaults to `"[SEP]"`): The separator token, which is used when building a sequence from two sequences. """ model_input_names = ["input_ids", "attention_mask"] def __init__( self, pad_token="[PAD]", bos_token="[BOS]", eos_token="[EOS]", mask_token="[MASK]", cls_token="[CLS]", sep_token="[SEP]", model_max_length=2048, **kwargs, ) -> None: pad_token = AddedToken(pad_token, lstrip=False, rstrip=False) if isinstance(pad_token, str) else pad_token bos_token = AddedToken(bos_token, lstrip=False, rstrip=False) if isinstance(bos_token, str) else bos_token eos_token = AddedToken(eos_token, lstrip=False, rstrip=False) if isinstance(eos_token, str) else eos_token mask_token = AddedToken(mask_token, lstrip=False, rstrip=False) if isinstance(mask_token, str) else mask_token cls_token = AddedToken(cls_token, lstrip=False, rstrip=False) if isinstance(cls_token, str) else cls_token sep_token = AddedToken(sep_token, lstrip=False, rstrip=False) if isinstance(sep_token, str) else sep_token self._utf_vocab_size = 2**8 # utf is 8 bits # Since these tokens are not part of the vocabulary, we manually add them self._added_tokens_decoder: Dict[str, int] = { 0: pad_token, 1: bos_token, 2: eos_token, 3: mask_token, 4: cls_token, 5: sep_token, } self._num_special_tokens = len(self._added_tokens_decoder) super().__init__( pad_token=pad_token, bos_token=bos_token, eos_token=eos_token, mask_token=mask_token, cls_token=cls_token, sep_token=sep_token, model_max_length=model_max_length, **kwargs, ) def get_vocab(self) -> Dict[str, int]: vocab = {} for i in range(self._utf_vocab_size): token = chr(i) vocab[token] = i + self._num_special_tokens vocab.update(self.added_tokens_encoder) return vocab @property def vocab_size(self): return self._utf_vocab_size def get_special_tokens_mask( self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None, already_has_special_tokens: bool = False ) -> List[int]: """ Retrieve sequence ids from a token list that has no special tokens added. This method is called when adding special tokens using the tokenizer `prepare_for_model` method. Args: token_ids_0 (`List[int]`): List of IDs. token_ids_1 (`List[int]`, *optional*): Optional second list of IDs for sequence pairs. already_has_special_tokens (`bool`, *optional*, defaults to `False`): Whether or not the token list is already formatted with special tokens for the model. Returns: `List[int]`: A list of integers in the range [0, 1]: 1 for a special token, 0 for a sequence token. """ if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_0=token_ids_0, token_ids_1=token_ids_1, already_has_special_tokens=True ) # normal case: some special tokens if token_ids_1 is None: return [1] + [0] * len(token_ids_0) + [1] return [1] + ([0] * len(token_ids_0)) + [1] + ([0] * len(token_ids_1)) + [1] def build_inputs_with_special_tokens( self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None ) -> List[int]: """ Build model inputs from a sequence or a pair of sequence for sequence classification tasks. A sequence has the following format: - single sequence: `[CLS] X [SEP]` - pair of sequences: `[CLS] A [SEP] B [SEP]` Args: token_ids_0 (`List[int]`): List of IDs to which the special tokens will be added. token_ids_1 (`List[int]`, *optional*): Optional second list of IDs for sequence pairs. Returns: `List[int]`: List of [input IDs](../glossary#input-ids) with the appropriate special tokens. """ if token_ids_1 is None: return [self.cls_token_id] + token_ids_0 + [self.sep_token_id] else: return [self.cls_token_id] + token_ids_0 + [self.sep_token_id] + token_ids_1 + [self.sep_token_id] def _tokenize(self, text: str) -> List[str]: """Take as input a string and return a list of strings (tokens) for words/sub-words""" tokens = [chr(i) for i in text.encode("utf-8")] return tokens def _convert_token_to_id(self, token): """Converts a token (str) in an id using the vocab.""" if len(token) != 1: token_id = self.unk_token_id else: token_id = ord(token) + self._num_special_tokens return token_id def _convert_id_to_token(self, index): """Converts an index (integer) in a token (str) using the vocab.""" token = chr(index - self._num_special_tokens) return token # TODO @ArthurZ refactor this as well.... def convert_tokens_to_string(self, tokens): """Converts a sequence of tokens (string) in a single string.""" bstring = b"" for token in tokens: if token in self.added_tokens_encoder: tok_string = str(token).encode("utf-8") else: tok_string = bytes([ord(token)]) bstring += tok_string string = bstring.decode("utf-8", errors="replace") return string # PerceiverTokenizer has no vocab file def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]: return ()