# coding=utf-8 # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Pop2Piano model configuration""" from ...configuration_utils import PretrainedConfig from ...utils import logging logger = logging.get_logger(__name__) from ..deprecated._archive_maps import POP2PIANO_PRETRAINED_CONFIG_ARCHIVE_MAP # noqa: F401, E402 class Pop2PianoConfig(PretrainedConfig): r""" This is the configuration class to store the configuration of a [`Pop2PianoForConditionalGeneration`]. It is used to instantiate a Pop2PianoForConditionalGeneration model according to the specified arguments, defining the model architecture. Instantiating a configuration with the defaults will yield a similar configuration to that of the Pop2Piano [sweetcocoa/pop2piano](https://huggingface.co/sweetcocoa/pop2piano) architecture. Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the documentation from [`PretrainedConfig`] for more information. Arguments: vocab_size (`int`, *optional*, defaults to 2400): Vocabulary size of the `Pop2PianoForConditionalGeneration` model. Defines the number of different tokens that can be represented by the `inputs_ids` passed when calling [`Pop2PianoForConditionalGeneration`]. composer_vocab_size (`int`, *optional*, defaults to 21): Denotes the number of composers. d_model (`int`, *optional*, defaults to 512): Size of the encoder layers and the pooler layer. d_kv (`int`, *optional*, defaults to 64): Size of the key, query, value projections per attention head. The `inner_dim` of the projection layer will be defined as `num_heads * d_kv`. d_ff (`int`, *optional*, defaults to 2048): Size of the intermediate feed forward layer in each `Pop2PianoBlock`. num_layers (`int`, *optional*, defaults to 6): Number of hidden layers in the Transformer encoder. num_decoder_layers (`int`, *optional*): Number of hidden layers in the Transformer decoder. Will use the same value as `num_layers` if not set. num_heads (`int`, *optional*, defaults to 8): Number of attention heads for each attention layer in the Transformer encoder. relative_attention_num_buckets (`int`, *optional*, defaults to 32): The number of buckets to use for each attention layer. relative_attention_max_distance (`int`, *optional*, defaults to 128): The maximum distance of the longer sequences for the bucket separation. dropout_rate (`float`, *optional*, defaults to 0.1): The ratio for all dropout layers. layer_norm_epsilon (`float`, *optional*, defaults to 1e-6): The epsilon used by the layer normalization layers. initializer_factor (`float`, *optional*, defaults to 1.0): A factor for initializing all weight matrices (should be kept to 1.0, used internally for initialization testing). feed_forward_proj (`string`, *optional*, defaults to `"gated-gelu"`): Type of feed forward layer to be used. Should be one of `"relu"` or `"gated-gelu"`. use_cache (`bool`, *optional*, defaults to `True`): Whether or not the model should return the last key/values attentions (not used by all models). dense_act_fn (`string`, *optional*, defaults to `"relu"`): Type of Activation Function to be used in `Pop2PianoDenseActDense` and in `Pop2PianoDenseGatedActDense`. """ model_type = "pop2piano" keys_to_ignore_at_inference = ["past_key_values"] def __init__( self, vocab_size=2400, composer_vocab_size=21, d_model=512, d_kv=64, d_ff=2048, num_layers=6, num_decoder_layers=None, num_heads=8, relative_attention_num_buckets=32, relative_attention_max_distance=128, dropout_rate=0.1, layer_norm_epsilon=1e-6, initializer_factor=1.0, feed_forward_proj="gated-gelu", # noqa is_encoder_decoder=True, use_cache=True, pad_token_id=0, eos_token_id=1, dense_act_fn="relu", **kwargs, ): self.vocab_size = vocab_size self.composer_vocab_size = composer_vocab_size self.d_model = d_model self.d_kv = d_kv self.d_ff = d_ff self.num_layers = num_layers self.num_decoder_layers = num_decoder_layers if num_decoder_layers is not None else self.num_layers self.num_heads = num_heads self.relative_attention_num_buckets = relative_attention_num_buckets self.relative_attention_max_distance = relative_attention_max_distance self.dropout_rate = dropout_rate self.layer_norm_epsilon = layer_norm_epsilon self.initializer_factor = initializer_factor self.feed_forward_proj = feed_forward_proj self.use_cache = use_cache self.dense_act_fn = dense_act_fn self.is_gated_act = self.feed_forward_proj.split("-")[0] == "gated" self.hidden_size = self.d_model self.num_attention_heads = num_heads self.num_hidden_layers = num_layers super().__init__( pad_token_id=pad_token_id, eos_token_id=eos_token_id, is_encoder_decoder=is_encoder_decoder, **kwargs, )