# coding=utf-8 # Copyright 2022 The REALM authors and The HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ REALM model configuration.""" from ...configuration_utils import PretrainedConfig from ...utils import logging logger = logging.get_logger(__name__) from ..deprecated._archive_maps import REALM_PRETRAINED_CONFIG_ARCHIVE_MAP # noqa: F401, E402 class RealmConfig(PretrainedConfig): r""" This is the configuration class to store the configuration of 1. [`RealmEmbedder`] 2. [`RealmScorer`] 3. [`RealmKnowledgeAugEncoder`] 4. [`RealmRetriever`] 5. [`RealmReader`] 6. [`RealmForOpenQA`] It is used to instantiate an REALM model according to the specified arguments, defining the model architecture. Instantiating a configuration with the defaults will yield a similar configuration to that of the REALM [google/realm-cc-news-pretrained-embedder](https://huggingface.co/google/realm-cc-news-pretrained-embedder) architecture. Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the documentation from [`PretrainedConfig`] for more information. Args: vocab_size (`int`, *optional*, defaults to 30522): Vocabulary size of the REALM model. Defines the number of different tokens that can be represented by the `inputs_ids` passed when calling [`RealmEmbedder`], [`RealmScorer`], [`RealmKnowledgeAugEncoder`], or [`RealmReader`]. hidden_size (`int`, *optional*, defaults to 768): Dimension of the encoder layers and the pooler layer. retriever_proj_size (`int`, *optional*, defaults to 128): Dimension of the retriever(embedder) projection. num_hidden_layers (`int`, *optional*, defaults to 12): Number of hidden layers in the Transformer encoder. num_attention_heads (`int`, *optional*, defaults to 12): Number of attention heads for each attention layer in the Transformer encoder. num_candidates (`int`, *optional*, defaults to 8): Number of candidates inputted to the RealmScorer or RealmKnowledgeAugEncoder. intermediate_size (`int`, *optional*, defaults to 3072): Dimension of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder. hidden_act (`str` or `function`, *optional*, defaults to `"gelu_new"`): The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`, `"relu"`, `"selu"` and `"gelu_new"` are supported. hidden_dropout_prob (`float`, *optional*, defaults to 0.1): The dropout probability for all fully connected layers in the embeddings, encoder, and pooler. attention_probs_dropout_prob (`float`, *optional*, defaults to 0.1): The dropout ratio for the attention probabilities. max_position_embeddings (`int`, *optional*, defaults to 512): The maximum sequence length that this model might ever be used with. Typically set this to something large just in case (e.g., 512 or 1024 or 2048). type_vocab_size (`int`, *optional*, defaults to 2): The vocabulary size of the `token_type_ids` passed when calling [`RealmEmbedder`], [`RealmScorer`], [`RealmKnowledgeAugEncoder`], or [`RealmReader`]. initializer_range (`float`, *optional*, defaults to 0.02): The standard deviation of the truncated_normal_initializer for initializing all weight matrices. layer_norm_eps (`float`, *optional*, defaults to 1e-12): The epsilon used by the layer normalization layers. span_hidden_size (`int`, *optional*, defaults to 256): Dimension of the reader's spans. max_span_width (`int`, *optional*, defaults to 10): Max span width of the reader. reader_layer_norm_eps (`float`, *optional*, defaults to 1e-3): The epsilon used by the reader's layer normalization layers. reader_beam_size (`int`, *optional*, defaults to 5): Beam size of the reader. reader_seq_len (`int`, *optional*, defaults to 288+32): Maximum sequence length of the reader. num_block_records (`int`, *optional*, defaults to 13353718): Number of block records. searcher_beam_size (`int`, *optional*, defaults to 5000): Beam size of the searcher. Note that when eval mode is enabled, *searcher_beam_size* will be the same as *reader_beam_size*. Example: ```python >>> from transformers import RealmConfig, RealmEmbedder >>> # Initializing a REALM realm-cc-news-pretrained-* style configuration >>> configuration = RealmConfig() >>> # Initializing a model (with random weights) from the google/realm-cc-news-pretrained-embedder style configuration >>> model = RealmEmbedder(configuration) >>> # Accessing the model configuration >>> configuration = model.config ```""" model_type = "realm" def __init__( self, vocab_size=30522, hidden_size=768, retriever_proj_size=128, num_hidden_layers=12, num_attention_heads=12, num_candidates=8, intermediate_size=3072, hidden_act="gelu_new", hidden_dropout_prob=0.1, attention_probs_dropout_prob=0.1, max_position_embeddings=512, type_vocab_size=2, initializer_range=0.02, layer_norm_eps=1e-12, span_hidden_size=256, max_span_width=10, reader_layer_norm_eps=1e-3, reader_beam_size=5, reader_seq_len=320, # 288 + 32 num_block_records=13353718, searcher_beam_size=5000, pad_token_id=1, bos_token_id=0, eos_token_id=2, **kwargs, ): super().__init__(pad_token_id=pad_token_id, bos_token_id=bos_token_id, eos_token_id=eos_token_id, **kwargs) # Common config self.vocab_size = vocab_size self.max_position_embeddings = max_position_embeddings self.hidden_size = hidden_size self.retriever_proj_size = retriever_proj_size self.num_hidden_layers = num_hidden_layers self.num_attention_heads = num_attention_heads self.num_candidates = num_candidates self.intermediate_size = intermediate_size self.hidden_act = hidden_act self.hidden_dropout_prob = hidden_dropout_prob self.attention_probs_dropout_prob = attention_probs_dropout_prob self.initializer_range = initializer_range self.type_vocab_size = type_vocab_size self.layer_norm_eps = layer_norm_eps # Reader config self.span_hidden_size = span_hidden_size self.max_span_width = max_span_width self.reader_layer_norm_eps = reader_layer_norm_eps self.reader_beam_size = reader_beam_size self.reader_seq_len = reader_seq_len # Retrieval config self.num_block_records = num_block_records self.searcher_beam_size = searcher_beam_size