# coding=utf-8 # Copyright 2024 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ PyTorch SegGpt model.""" import collections.abc import math from dataclasses import dataclass from typing import Dict, List, Optional, Tuple, Union import torch import torch.utils.checkpoint from torch import nn from torch.nn import functional as F from ...activations import ACT2FN from ...modeling_utils import PreTrainedModel from ...utils import ( ModelOutput, add_start_docstrings, add_start_docstrings_to_model_forward, logging, replace_return_docstrings, ) from .configuration_seggpt import SegGptConfig logger = logging.get_logger(__name__) # General docstring _CONFIG_FOR_DOC = "SegGptConfig" # Base docstring _CHECKPOINT_FOR_DOC = "BAAI/seggpt-vit-large" _EXPECTED_OUTPUT_SHAPE = [3, 896, 448] from ..deprecated._archive_maps import SEGGPT_PRETRAINED_MODEL_ARCHIVE_LIST # noqa: F401, E402 @dataclass class SegGptEncoderOutput(ModelOutput): """ Output type of [`SegGptEncoderOutput`]. Args: last_hidden_state (`torch.FloatTensor` of shape `(batch_size, patch_height, patch_width, hidden_size)`): Sequence of hidden-states at the output of the last layer of the model. hidden_states (`Tuple[torch.FloatTensor]`, `optional`, returned when `config.output_hidden_states=True`): Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of shape `(batch_size, patch_height, patch_width, hidden_size)`. attentions (`Tuple[torch.FloatTensor]`, `optional`, returned when `config.output_attentions=True`): Tuple of *torch.FloatTensor* (one for each layer) of shape `(batch_size, num_heads, seq_len, seq_len)`. intermediate_hidden_states (`Tuple[torch.FloatTensor]`, `optional`, returned when `config.intermediate_hidden_state_indices` is set): Tuple of `torch.FloatTensor` of shape `(batch_size, patch_height, patch_width, hidden_size)`. Each element in the Tuple corresponds to the output of the layer specified in `config.intermediate_hidden_state_indices`. Additionaly, each feature passes through a LayerNorm. """ last_hidden_state: torch.FloatTensor hidden_states: Optional[Tuple[torch.FloatTensor]] = None attentions: Optional[Tuple[torch.FloatTensor]] = None intermediate_hidden_states: Optional[Tuple[torch.FloatTensor]] = None @dataclass class SegGptImageSegmentationOutput(ModelOutput): """ Output type of [`SegGptImageSegmentationOutput`]. Args: loss (`torch.FloatTensor`, `optional`, returned when `labels` is provided): The loss value. pred_masks (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`): The predicted masks. hidden_states (`Tuple[torch.FloatTensor]`, `optional`, returned when `config.output_hidden_states=True`): Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of shape `(batch_size, patch_height, patch_width, hidden_size)`. attentions (`Tuple[torch.FloatTensor]`, `optional`, returned when `config.output_attentions=True`): Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, seq_len, seq_len)`. """ loss: Optional[torch.FloatTensor] = None pred_masks: Optional[torch.FloatTensor] = None hidden_states: Optional[Tuple[torch.FloatTensor]] = None attentions: Optional[Tuple[torch.FloatTensor]] = None # Copied from transformers.models.sam.modeling_sam.SamPatchEmbeddings with Sam->SegGpt class SegGptPatchEmbeddings(nn.Module): """ This class turns `pixel_values` of shape `(batch_size, num_channels, height, width)` into the initial `hidden_states` (patch embeddings) of shape `(batch_size, seq_length, hidden_size)` to be consumed by a Transformer. """ def __init__(self, config): super().__init__() image_size, patch_size = config.image_size, config.patch_size num_channels, hidden_size = config.num_channels, config.hidden_size image_size = image_size if isinstance(image_size, collections.abc.Iterable) else (image_size, image_size) patch_size = patch_size if isinstance(patch_size, collections.abc.Iterable) else (patch_size, patch_size) num_patches = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) self.image_size = image_size self.patch_size = patch_size self.num_channels = num_channels self.num_patches = num_patches self.projection = nn.Conv2d(num_channels, hidden_size, kernel_size=patch_size, stride=patch_size) def forward(self, pixel_values): batch_size, num_channels, height, width = pixel_values.shape if num_channels != self.num_channels: raise ValueError( "Make sure that the channel dimension of the pixel values match with the one set in the configuration." ) if height != self.image_size[0] or width != self.image_size[1]: raise ValueError( f"Input image size ({height}*{width}) doesn't match model ({self.image_size[0]}*{self.image_size[1]})." ) embeddings = self.projection(pixel_values).permute(0, 2, 3, 1) return embeddings class SegGptEmbeddings(nn.Module): """ Construct the embeddings from patch, position embeddings for input and prompt. """ def __init__(self, config: SegGptConfig) -> None: super().__init__() self.mask_token = nn.Parameter(torch.zeros(1, 1, 1, config.hidden_size)) self.segment_token_input = nn.Parameter(torch.zeros(1, 1, 1, config.hidden_size)) self.segment_token_prompt = nn.Parameter(torch.zeros(1, 1, 1, config.hidden_size)) # token for seg types self.type_token_semantic = nn.Parameter(torch.zeros(1, 1, 1, config.hidden_size)) self.type_token_instance = nn.Parameter(torch.zeros(1, 1, 1, config.hidden_size)) self.patch_embeddings = SegGptPatchEmbeddings(config) num_positions = (config.pretrain_image_size // config.patch_size) ** 2 + 1 self.position_embeddings = nn.Parameter(torch.randn(1, num_positions, config.hidden_size)) self.dropout = nn.Dropout(config.hidden_dropout_prob) def interpolate_pos_encoding(self, height: int, width: int) -> torch.Tensor: patch_pos_embed = self.position_embeddings[:, 1:] num_patches = patch_pos_embed.shape[1] pretrain_patch_size = int(math.sqrt(num_patches)) if pretrain_patch_size != height or pretrain_patch_size != width: patch_pos_embed = F.interpolate( patch_pos_embed.reshape(1, pretrain_patch_size, pretrain_patch_size, -1).permute(0, 3, 1, 2), size=(height, width), mode="bicubic", align_corners=False, ) return patch_pos_embed.permute(0, 2, 3, 1) else: return patch_pos_embed.reshape(1, height, width, -1) def forward( self, pixel_values: torch.Tensor, prompt_pixel_values: torch.Tensor, bool_masked_pos: Optional[torch.BoolTensor] = None, embedding_type: Optional[str] = None, ) -> torch.Tensor: input_embeddings = self.patch_embeddings(pixel_values) prompt_embeddings = self.patch_embeddings(prompt_pixel_values) batch_size, patch_height, patch_width, _ = input_embeddings.shape mask_token = self.mask_token.expand(batch_size, patch_height, patch_width, -1) # replace the masked visual tokens by mask_token w = bool_masked_pos.unsqueeze(-1).type_as(mask_token).reshape(-1, patch_height, patch_width, 1) prompt_embeddings = prompt_embeddings * (1 - w) + mask_token * w embedding_type = embedding_type if embedding_type is not None else "instance" # add positional encoding to each token pos_embed = self.interpolate_pos_encoding(patch_height, patch_width) # add segment token input_embeddings = input_embeddings + self.segment_token_input prompt_embeddings = prompt_embeddings + self.segment_token_prompt # add position embedding skipping CLS input_embeddings = input_embeddings + pos_embed prompt_embeddings = prompt_embeddings + pos_embed # add type embedding to each token if embedding_type == "semantic": type_embedding = self.type_token_semantic elif embedding_type == "instance": type_embedding = self.type_token_instance else: raise ValueError(f"Embedding type should be either 'semantic' or 'instance', but got {embedding_type}") input_embeddings = input_embeddings + type_embedding prompt_embeddings = prompt_embeddings + type_embedding embeddings = torch.cat((input_embeddings, prompt_embeddings), dim=0) return embeddings class SegGptAttention(nn.Module): """Multi-head Attention block with relative position embeddings.""" def __init__(self, config): super().__init__() image_size, patch_size = config.image_size, config.patch_size image_size = image_size if isinstance(image_size, collections.abc.Iterable) else (image_size, image_size) patch_size = patch_size if isinstance(patch_size, collections.abc.Iterable) else (patch_size, patch_size) input_size = (image_size[0] // config.patch_size, image_size[1] // config.patch_size) head_dim = config.hidden_size // config.num_attention_heads self.num_attention_heads = config.num_attention_heads self.scale = head_dim**-0.5 self.qkv = nn.Linear(config.hidden_size, config.hidden_size * 3, bias=config.qkv_bias) self.proj = nn.Linear(config.hidden_size, config.hidden_size) self.use_relative_position_embeddings = config.use_relative_position_embeddings if self.use_relative_position_embeddings: if input_size is None: raise ValueError("Input size must be provided if using relative positional encoding.") # initialize relative positional embeddings self.rel_pos_h = nn.Parameter(torch.zeros(2 * input_size[0] - 1, head_dim)) self.rel_pos_w = nn.Parameter(torch.zeros(2 * input_size[1] - 1, head_dim)) def get_rel_pos(self, q_size: int, k_size: int, rel_pos: torch.Tensor) -> torch.Tensor: """ Get relative positional embeddings according to the relative positions of query and key sizes. Args: q_size (int): size of the query. k_size (int): size of key k. rel_pos (`torch.Tensor`): relative position embeddings (L, channel). Returns: Extracted positional embeddings according to relative positions. """ max_rel_dist = int(2 * max(q_size, k_size) - 1) # Interpolate rel pos. rel_pos_resized = F.interpolate( rel_pos.reshape(1, rel_pos.shape[0], -1).permute(0, 2, 1), size=max_rel_dist, mode="linear", ) rel_pos_resized = rel_pos_resized.reshape(-1, max_rel_dist).permute(1, 0) # Scale the coords with short length if shapes for q and k are different. q_coords = torch.arange(q_size)[:, None] * max(k_size / q_size, 1.0) k_coords = torch.arange(k_size)[None, :] * max(q_size / k_size, 1.0) relative_coords = (q_coords - k_coords) + (k_size - 1) * max(q_size / k_size, 1.0) return rel_pos_resized[relative_coords.long()] def add_decomposed_rel_pos( self, attn: torch.Tensor, query: torch.Tensor, rel_pos_h: torch.Tensor, rel_pos_w: torch.Tensor, q_size: Tuple[int, int], k_size: Tuple[int, int], ) -> torch.Tensor: """ Calculate decomposed Relative Positional Embeddings from :paper:`mvitv2`. https://github.com/facebookresearch/mvit/blob/19786631e330df9f3622e5402b4a419a263a2c80/mvit/models/attention.py Args: attn (`torch.Tensor`): attention map. query (`torch.Tensor`): query q in the attention layer with shape (batch_size, query_height * query_width, channel). rel_pos_h (`torch.Tensor`): relative position embeddings (Lh, channel) for height axis. rel_pos_w (`torch.Tensor`): relative position embeddings (Lw, channel) for width axis. q_size (tuple): spatial sequence size of query q with (query_height, query_width). k_size (tuple): spatial sequence size of key k with (key_height, key_width). Returns: attn (`torch.Tensor`): attention map with added relative positional embeddings. """ query_height, query_width = q_size key_height, key_width = k_size relative_position_height = self.get_rel_pos(query_height, key_height, rel_pos_h) relative_position_width = self.get_rel_pos(query_width, key_width, rel_pos_w) batch_size, _, dim = query.shape reshaped_query = query.reshape(batch_size, query_height, query_width, dim) rel_h = torch.einsum("bhwc,hkc->bhwk", reshaped_query, relative_position_height) rel_w = torch.einsum("bhwc,wkc->bhwk", reshaped_query, relative_position_width) attn = attn.reshape(batch_size, query_height, query_width, key_height, key_width) attn = attn + rel_h[:, :, :, :, None] + rel_w[:, :, :, None, :] attn = attn.reshape(batch_size, query_height * query_width, key_height * key_width) return attn def forward(self, hidden_states: torch.Tensor, output_attentions=False) -> torch.Tensor: batch_size, height, width, _ = hidden_states.shape # qkv with shape (3, batch_size, nHead, height * width, channel) qkv = ( self.qkv(hidden_states) .reshape(batch_size, height * width, 3, self.num_attention_heads, -1) .permute(2, 0, 3, 1, 4) ) # q, k, v with shape (batch_size * nHead, height * width, channel) query, key, value = qkv.reshape(3, batch_size * self.num_attention_heads, height * width, -1).unbind(0) attn_weights = (query * self.scale) @ key.transpose(-2, -1) if self.use_relative_position_embeddings: attn_weights = self.add_decomposed_rel_pos( attn_weights, query, self.rel_pos_h, self.rel_pos_w, (height, width), (height, width) ) attn_weights = torch.nn.functional.softmax(attn_weights, dtype=torch.float32, dim=-1).to(query.dtype) if output_attentions: # this operation is a bit awkward, but it's required to # make sure that attn_weights keeps its gradient. # In order to do so, attn_weights have to reshaped # twice and have to be reused in the following attn_weights_reshaped = attn_weights.view(batch_size, self.num_attention_heads, height * width, -1) attn_weights = attn_weights_reshaped.view(batch_size * self.num_attention_heads, height * width, -1) else: attn_weights_reshaped = None attn_output = (attn_weights @ value).reshape(batch_size, self.num_attention_heads, height, width, -1) attn_output = attn_output.permute(0, 2, 3, 1, 4).reshape(batch_size, height, width, -1) attn_output = self.proj(attn_output) return (attn_output, attn_weights_reshaped) # Copied from transformers.models.sam.modeling_sam.SamMLPBlock with SamMLPBlock->SegGptMlp class SegGptMlp(nn.Module): def __init__(self, config): super().__init__() self.lin1 = nn.Linear(config.hidden_size, config.mlp_dim) self.lin2 = nn.Linear(config.mlp_dim, config.hidden_size) self.act = ACT2FN[config.hidden_act] def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: hidden_states = self.lin1(hidden_states) hidden_states = self.act(hidden_states) hidden_states = self.lin2(hidden_states) return hidden_states # Copied from transformers.models.beit.modeling_beit.drop_path def drop_path(input: torch.Tensor, drop_prob: float = 0.0, training: bool = False) -> torch.Tensor: """ Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks). Comment by Ross Wightman: This is the same as the DropConnect impl I created for EfficientNet, etc networks, however, the original name is misleading as 'Drop Connect' is a different form of dropout in a separate paper... See discussion: https://github.com/tensorflow/tpu/issues/494#issuecomment-532968956 ... I've opted for changing the layer and argument names to 'drop path' rather than mix DropConnect as a layer name and use 'survival rate' as the argument. """ if drop_prob == 0.0 or not training: return input keep_prob = 1 - drop_prob shape = (input.shape[0],) + (1,) * (input.ndim - 1) # work with diff dim tensors, not just 2D ConvNets random_tensor = keep_prob + torch.rand(shape, dtype=input.dtype, device=input.device) random_tensor.floor_() # binarize output = input.div(keep_prob) * random_tensor return output # Copied from transformers.models.beit.modeling_beit.BeitDropPath with Beit->SegGpt class SegGptDropPath(nn.Module): """Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks).""" def __init__(self, drop_prob: Optional[float] = None) -> None: super().__init__() self.drop_prob = drop_prob def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: return drop_path(hidden_states, self.drop_prob, self.training) def extra_repr(self) -> str: return "p={}".format(self.drop_prob) class SegGptLayer(nn.Module): def __init__(self, config: SegGptConfig, drop_path_rate: float) -> None: super().__init__() self.attention = SegGptAttention(config) self.mlp = SegGptMlp(config) self.drop_path = SegGptDropPath(drop_path_rate) if drop_path_rate > 0.0 else nn.Identity() self.layernorm_before = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) self.layernorm_after = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) def forward( self, hidden_states: torch.Tensor, ensemble_cond: int, feature_ensemble: bool = False, output_attentions: bool = False, ) -> Union[Tuple[torch.Tensor, torch.Tensor], Tuple[torch.Tensor]]: self_attention_outputs = self.attention( self.layernorm_before(hidden_states), # in SegGpt, layernorm is applied before self-attention output_attentions=output_attentions, ) attention_output = self_attention_outputs[0] outputs = self_attention_outputs[1:] # add self attentions if we output attention weights if feature_ensemble and attention_output.shape[0] // 2 >= ensemble_cond: prompt, inputs = attention_output.split(attention_output.shape[1] // 2, dim=1) if ensemble_cond == 2: num_prompts = attention_output.shape[0] // 2 inputs = inputs.reshape(2, num_prompts, -1) inputs = inputs.mean(dim=1, keepdim=True).expand_as(inputs) inputs = inputs.reshape(*prompt.shape) else: inputs = inputs.mean(dim=0, keepdim=True).expand_as(inputs) attention_output = torch.cat([prompt, inputs], dim=1) # first residual connection hidden_states = self.drop_path(attention_output) + hidden_states residual = hidden_states hidden_states = self.layernorm_after(hidden_states) hidden_states = self.mlp(hidden_states) hidden_states = residual + self.drop_path(hidden_states) outputs = (hidden_states,) + outputs return outputs class SegGptEncoder(nn.Module): def __init__(self, config: SegGptConfig) -> None: super().__init__() self.config = config dpr = [x.item() for x in torch.linspace(0, config.drop_path_rate, config.num_hidden_layers)] self.layers = nn.ModuleList([SegGptLayer(config, dpr[i]) for i in range(config.num_hidden_layers)]) self.layernorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) self.gradient_checkpointing = False def forward( self, hidden_states: torch.Tensor, feature_ensemble: bool = False, output_attentions: bool = False, output_hidden_states: bool = False, return_dict: bool = True, ) -> Union[tuple, SegGptEncoderOutput]: all_hidden_states = () if output_hidden_states else None all_self_attentions = () if output_attentions else None intermediate_hidden_states = [] for i, layer_module in enumerate(self.layers): if output_hidden_states: all_hidden_states = all_hidden_states + (hidden_states,) # Condition to check if we have the appropriate number of prompts to ensemble ensemble_cond = 2 if self.config.merge_index > i else 1 if self.gradient_checkpointing and self.training: layer_outputs = self._gradient_checkpointing_func( layer_module.__call__, hidden_states, ensemble_cond, feature_ensemble, output_attentions, ) else: layer_outputs = layer_module(hidden_states, ensemble_cond, feature_ensemble, output_attentions) hidden_states = layer_outputs[0] if i == self.config.merge_index: hidden_states = ( hidden_states[: hidden_states.shape[0] // 2] + hidden_states[hidden_states.shape[0] // 2 :] ) * 0.5 if i in self.config.intermediate_hidden_state_indices: intermediate_hidden_states.append(self.layernorm(hidden_states)) if output_attentions: all_self_attentions = all_self_attentions + (layer_outputs[1],) if output_hidden_states: all_hidden_states = all_hidden_states + (hidden_states,) if not return_dict: return tuple( v for v in [hidden_states, all_hidden_states, all_self_attentions, intermediate_hidden_states] if v is not None ) return SegGptEncoderOutput( last_hidden_state=hidden_states, hidden_states=all_hidden_states, attentions=all_self_attentions, intermediate_hidden_states=intermediate_hidden_states, ) # Copied from transformers.models.convnext.modeling_convnext.ConvNextLayerNorm with ConvNext->SegGpt class SegGptLayerNorm(nn.Module): r"""LayerNorm that supports two data formats: channels_last (default) or channels_first. The ordering of the dimensions in the inputs. channels_last corresponds to inputs with shape (batch_size, height, width, channels) while channels_first corresponds to inputs with shape (batch_size, channels, height, width). """ def __init__(self, normalized_shape, eps=1e-6, data_format="channels_last"): super().__init__() self.weight = nn.Parameter(torch.ones(normalized_shape)) self.bias = nn.Parameter(torch.zeros(normalized_shape)) self.eps = eps self.data_format = data_format if self.data_format not in ["channels_last", "channels_first"]: raise NotImplementedError(f"Unsupported data format: {self.data_format}") self.normalized_shape = (normalized_shape,) def forward(self, x: torch.Tensor) -> torch.Tensor: if self.data_format == "channels_last": x = torch.nn.functional.layer_norm(x, self.normalized_shape, self.weight, self.bias, self.eps) elif self.data_format == "channels_first": input_dtype = x.dtype x = x.float() u = x.mean(1, keepdim=True) s = (x - u).pow(2).mean(1, keepdim=True) x = (x - u) / torch.sqrt(s + self.eps) x = x.to(dtype=input_dtype) x = self.weight[:, None, None] * x + self.bias[:, None, None] return x class SegGptDecoderHead(nn.Module): def __init__(self, config): super().__init__() self.conv = nn.Conv2d( config.decoder_hidden_size, config.decoder_hidden_size, kernel_size=3, padding=1, ) self.layernorm = SegGptLayerNorm( normalized_shape=config.decoder_hidden_size, eps=config.layer_norm_eps, data_format="channels_first" ) self.act_fct = ACT2FN[config.hidden_act] self.head = nn.Conv2d(config.decoder_hidden_size, 3, kernel_size=1, bias=True) # decoder to patch def forward(self, hidden_states: torch.FloatTensor): hidden_states = self.conv(hidden_states) hidden_states = self.layernorm(hidden_states) hidden_states = self.act_fct(hidden_states) hidden_states = self.head(hidden_states) return hidden_states class SegGptDecoder(nn.Module): def __init__(self, config): super().__init__() self.decoder_embed = nn.Linear( config.hidden_size * len(config.intermediate_hidden_state_indices), config.patch_size**2 * config.decoder_hidden_size, bias=True, ) self.decoder_pred = SegGptDecoderHead(config) self.patch_size = config.patch_size self.decoder_hidden_size = config.decoder_hidden_size self.config = config def _reshape_hidden_states(self, hidden_states: torch.FloatTensor) -> torch.FloatTensor: batch_size, patch_height, patch_width, _ = hidden_states.shape hidden_states = hidden_states.reshape( batch_size, patch_height, patch_width, self.patch_size, self.patch_size, self.decoder_hidden_size ) hidden_states = hidden_states.permute(0, 5, 1, 3, 2, 4) hidden_states = hidden_states.reshape( shape=(batch_size, -1, patch_height * self.patch_size, patch_width * self.patch_size) ) return hidden_states def forward(self, hidden_states: torch.FloatTensor): hidden_states = self.decoder_embed(hidden_states) hidden_states = self._reshape_hidden_states(hidden_states) hidden_states = self.decoder_pred(hidden_states) return hidden_states class SegGptPreTrainedModel(PreTrainedModel): """ An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained models. """ config_class = SegGptConfig base_model_prefix = "model" main_input_name = "pixel_values" supports_gradient_checkpointing = True _no_split_modules = ["SegGptEmbeddings", "SegGptLayer"] def _init_weights(self, module: Union[nn.Linear, nn.Conv2d, nn.LayerNorm]) -> None: """Initialize the weights""" std = self.config.initializer_range if isinstance(module, (nn.Linear, nn.Conv2d)): # Upcast the input in `fp32` and cast it back to desired `dtype` to avoid # `trunc_normal_cpu` not implemented in `half` issues module.weight.data = nn.init.trunc_normal_(module.weight.data.to(torch.float32), mean=0.0, std=std).to( module.weight.dtype ) if module.bias is not None: module.bias.data.zero_() elif isinstance(module, nn.LayerNorm): module.bias.data.zero_() module.weight.data.fill_(1.0) elif isinstance(module, SegGptAttention): module.rel_pos_h.data = nn.init.trunc_normal_( module.rel_pos_h.data.to(torch.float32), mean=0.0, std=std, ).to(module.rel_pos_h.dtype) module.rel_pos_w.data = nn.init.trunc_normal_( module.rel_pos_w.data.to(torch.float32), mean=0.0, std=std, ).to(module.rel_pos_w.dtype) elif isinstance(module, SegGptEmbeddings): module.position_embeddings.data = nn.init.trunc_normal_( module.position_embeddings.data.to(torch.float32), mean=0.0, std=std, ).to(module.position_embeddings.dtype) torch.nn.init.normal_(module.mask_token, std=std) torch.nn.init.normal_(module.segment_token_input, std=std) torch.nn.init.normal_(module.segment_token_prompt, std=std) torch.nn.init.normal_(module.type_token_semantic, std=std) torch.nn.init.normal_(module.type_token_instance, std=std) SEGGPT_START_DOCSTRING = r""" This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior. Parameters: config ([`SegGptConfig`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. """ SEGGPT_INPUTS_DOCSTRING = r""" Args: pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`): Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See [`SegGptImageProcessor.__call__`] for details. prompt_pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`): Prompt pixel values. Prompt pixel values can be obtained using [`AutoImageProcessor`]. See [`SegGptImageProcessor.__call__`] for details. prompt_masks (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`): Prompt mask. Prompt mask can be obtained using [`AutoImageProcessor`]. See [`SegGptImageProcessor.__call__`] for details. bool_masked_pos (`torch.BoolTensor` of shape `(batch_size, num_patches)`, *optional*): Boolean masked positions. Indicates which patches are masked (1) and which aren't (0). feature_ensemble (`bool`, *optional*): Boolean indicating whether to use feature ensemble or not. If `True`, the model will use feature ensemble if we have at least two prompts. If `False`, the model will not use feature ensemble. This argument should be considered when doing few-shot inference on an input image i.e. more than one prompt for the same image. embedding_type (`str`, *optional*): Embedding type. Indicates whether the prompt is a semantic or instance embedding. Can be either instance or semantic. output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. """ @add_start_docstrings( "The bare SegGpt Model transformer outputting raw hidden-states without any specific head on top.", SEGGPT_START_DOCSTRING, ) class SegGptModel(SegGptPreTrainedModel): def __init__(self, config: SegGptConfig): super().__init__(config) self.config = config self.embeddings = SegGptEmbeddings(config) self.encoder = SegGptEncoder(config) # Initialize weights and apply final processing self.post_init() def get_input_embeddings(self) -> SegGptPatchEmbeddings: return self.embeddings.patch_embeddings def _prune_heads(self, heads_to_prune: Dict[int, List[int]]) -> None: """ Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base class PreTrainedModel """ for layer, heads in heads_to_prune.items(): self.encoder.layer[layer].attention.prune_heads(heads) @add_start_docstrings_to_model_forward(SEGGPT_INPUTS_DOCSTRING) @replace_return_docstrings(output_type=SegGptEncoderOutput, config_class=_CONFIG_FOR_DOC) def forward( self, pixel_values: torch.Tensor, prompt_pixel_values: torch.Tensor, prompt_masks: torch.Tensor, bool_masked_pos: Optional[torch.BoolTensor] = None, feature_ensemble: Optional[bool] = None, embedding_type: Optional[str] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, SegGptEncoderOutput]: r""" Returns: Examples: ```python >>> from transformers import SegGptImageProcessor, SegGptModel >>> from PIL import Image >>> import requests >>> image_input_url = "https://raw.githubusercontent.com/baaivision/Painter/main/SegGPT/SegGPT_inference/examples/hmbb_2.jpg" >>> image_prompt_url = "https://raw.githubusercontent.com/baaivision/Painter/main/SegGPT/SegGPT_inference/examples/hmbb_1.jpg" >>> mask_prompt_url = "https://raw.githubusercontent.com/baaivision/Painter/main/SegGPT/SegGPT_inference/examples/hmbb_1_target.png" >>> image_input = Image.open(requests.get(image_input_url, stream=True).raw) >>> image_prompt = Image.open(requests.get(image_prompt_url, stream=True).raw) >>> mask_prompt = Image.open(requests.get(mask_prompt_url, stream=True).raw).convert("L") >>> checkpoint = "BAAI/seggpt-vit-large" >>> model = SegGptModel.from_pretrained(checkpoint) >>> image_processor = SegGptImageProcessor.from_pretrained(checkpoint) >>> inputs = image_processor(images=image_input, prompt_images=image_prompt, prompt_masks=mask_prompt, return_tensors="pt") >>> outputs = model(**inputs) >>> list(outputs.last_hidden_state.shape) [1, 56, 28, 1024] ``` """ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.use_return_dict feature_ensemble = feature_ensemble if feature_ensemble is not None else False expected_dtype = self.embeddings.patch_embeddings.projection.weight.dtype pixel_values = pixel_values.to(expected_dtype) prompt_pixel_values = prompt_pixel_values.to(expected_dtype) # Prepare inputs pixel_values = torch.cat((prompt_pixel_values, pixel_values), dim=2) prompt_pixel_values = torch.cat((prompt_masks, prompt_masks), dim=2) # We concat on height axis so SegGPT can handle as a single image, hence we need to mask the portion # of the prompt pixels that will be destinated to the prediction as they don't add any information. if bool_masked_pos is None: num_patches = self.embeddings.patch_embeddings.num_patches bool_masked_pos = torch.zeros(num_patches, dtype=torch.bool).to(pixel_values.device) bool_masked_pos[num_patches // 2 :] = 1 bool_masked_pos = bool_masked_pos.unsqueeze(0) embedding_output = self.embeddings( pixel_values, prompt_pixel_values, embedding_type=embedding_type, bool_masked_pos=bool_masked_pos ) encoder_outputs = self.encoder( embedding_output, feature_ensemble=feature_ensemble, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) return encoder_outputs def patchify(tensor: torch.Tensor, patch_size: int) -> torch.Tensor: batch_size, num_channels, height, width = tensor.shape patch_height = height // patch_size patch_width = width // patch_size tensor = tensor.reshape(shape=(batch_size, num_channels, patch_height, patch_size, patch_width, patch_size)) tensor = tensor.permute(0, 2, 4, 3, 5, 1) tensor = tensor.reshape(shape=(batch_size, patch_height * patch_width, patch_size**2 * 3)) return tensor def unpatchify(tensor: torch.Tensor, patch_height: int, patch_width: int) -> torch.Tensor: batch_size = tensor.shape[0] patch_size = int((tensor.shape[-1] / 3) ** 0.5) if patch_height * patch_width != tensor.shape[1]: raise ValueError(f"Number of patches {tensor.shape[1]} does not match patch height and width.") tensor = tensor.reshape(shape=(batch_size, patch_height, patch_width, patch_size, patch_size, 3)) tensor = tensor.permute(0, 5, 1, 3, 2, 4) tensor = tensor.reshape(shape=(batch_size, 3, patch_height * patch_size, patch_width * patch_size)) return tensor class SegGptLoss(nn.Module): def __init__(self, config): super().__init__() self.beta = config.beta self.patch_size = config.patch_size def forward( self, pixel_values: torch.FloatTensor, prompt_pixel_values: torch.FloatTensor, pred_masks: torch.FloatTensor, labels: torch.FloatTensor, bool_masked_pos: torch.BoolTensor, ): """Computes the L1 loss between the predicted masks and the ground truth masks. Args: pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, 2*height, width)`): Concatenated pixel values from prompt and input images. prompt_pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, 2*height, width)`): Concatenated pixel values from mask prompt. pred_masks (`torch.FloatTensor` of shape `(batch_size, num_channels, 2*height, width)`): Predicted masks. labels (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`): Ground truth mask for input images. bool_masked_pos (`torch.BoolTensor` of shape `(batch_size, num_patches)`): Boolean masked positions. Indicates which patches are masked (1) and which aren't (0). Returns: `torch.FloatTensor`: The mean L1 loss between the predicted masks and the ground truth masks. """ mask = bool_masked_pos[:, :, None].repeat(1, 1, self.patch_size**2 * 3) mask = unpatchify(mask, pixel_values.shape[1] // self.patch_size, pixel_values.shape[2] // self.patch_size) # Changing dummy mask in prompt_pixel_values to labels values prompt_pixel_values = prompt_pixel_values.clone() prompt_pixel_values[:, :, prompt_pixel_values.shape[2] // 2 :, :] = labels loss = F.smooth_l1_loss(pred_masks, prompt_pixel_values, reduction="none", beta=self.beta) loss = (loss * mask).sum() / mask.sum() # mean loss on removed patches return loss @add_start_docstrings( "SegGpt model with a decoder on top for one-shot image segmentation.", SEGGPT_START_DOCSTRING, ) class SegGptForImageSegmentation(SegGptPreTrainedModel): def __init__(self, config: SegGptConfig): super().__init__(config) self.config = config self.model = SegGptModel(config) self.decoder = SegGptDecoder(config) # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(SEGGPT_INPUTS_DOCSTRING) @replace_return_docstrings(output_type=SegGptImageSegmentationOutput, config_class=_CONFIG_FOR_DOC) def forward( self, pixel_values: torch.Tensor, prompt_pixel_values: torch.Tensor, prompt_masks: torch.Tensor, bool_masked_pos: Optional[torch.BoolTensor] = None, feature_ensemble: Optional[bool] = None, embedding_type: Optional[str] = None, labels: Optional[torch.FloatTensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, SegGptImageSegmentationOutput]: r""" labels (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`, `optional`): Ground truth mask for input images. Returns: Examples: ```python >>> from transformers import SegGptImageProcessor, SegGptForImageSegmentation >>> from PIL import Image >>> import requests >>> image_input_url = "https://raw.githubusercontent.com/baaivision/Painter/main/SegGPT/SegGPT_inference/examples/hmbb_2.jpg" >>> image_prompt_url = "https://raw.githubusercontent.com/baaivision/Painter/main/SegGPT/SegGPT_inference/examples/hmbb_1.jpg" >>> mask_prompt_url = "https://raw.githubusercontent.com/baaivision/Painter/main/SegGPT/SegGPT_inference/examples/hmbb_1_target.png" >>> image_input = Image.open(requests.get(image_input_url, stream=True).raw) >>> image_prompt = Image.open(requests.get(image_prompt_url, stream=True).raw) >>> mask_prompt = Image.open(requests.get(mask_prompt_url, stream=True).raw).convert("L") >>> checkpoint = "BAAI/seggpt-vit-large" >>> model = SegGptForImageSegmentation.from_pretrained(checkpoint) >>> image_processor = SegGptImageProcessor.from_pretrained(checkpoint) >>> inputs = image_processor(images=image_input, prompt_images=image_prompt, prompt_masks=mask_prompt, return_tensors="pt") >>> outputs = model(**inputs) >>> result = image_processor.post_process_semantic_segmentation(outputs, target_sizes=[image_input.size[::-1]])[0] >>> print(list(result.shape)) [170, 297] ``` """ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.use_return_dict if bool_masked_pos is None: num_patches = self.model.embeddings.patch_embeddings.num_patches bool_masked_pos = torch.zeros(num_patches, dtype=torch.bool).to(pixel_values.device) bool_masked_pos[num_patches // 2 :] = 1 bool_masked_pos = bool_masked_pos.unsqueeze(0) outputs = self.model( pixel_values=pixel_values, prompt_pixel_values=prompt_pixel_values, prompt_masks=prompt_masks, bool_masked_pos=bool_masked_pos, feature_ensemble=feature_ensemble, embedding_type=embedding_type, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) intermediate_hidden_states = outputs.intermediate_hidden_states if return_dict else outputs[-1] intermediate_hidden_states = torch.cat(intermediate_hidden_states, dim=-1) pred_masks = self.decoder(intermediate_hidden_states) loss = None if labels is not None: loss_fn = SegGptLoss(self.config) loss = loss_fn(pixel_values, prompt_pixel_values, pred_masks, labels, bool_masked_pos) if not return_dict: output = (pred_masks,) if output_hidden_states: output = output + (outputs[1],) if output_attentions: idx = 2 if output_hidden_states else 1 output = output + (outputs[idx],) if loss is not None: output = (loss,) + output return output return SegGptImageSegmentationOutput( loss=loss, pred_masks=pred_masks, hidden_states=outputs.hidden_states, attentions=outputs.attentions, )