# Copyright 2024 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import List from ...configuration_utils import PretrainedConfig from ...utils import logging logger = logging.get_logger(__name__) SUPERPOINT_PRETRAINED_CONFIG_ARCHIVE_MAP = { "magic-leap-community/superpoint": "https://huggingface.co/magic-leap-community/superpoint/blob/main/config.json" } class SuperPointConfig(PretrainedConfig): r""" This is the configuration class to store the configuration of a [`SuperPointForKeypointDetection`]. It is used to instantiate a SuperPoint model according to the specified arguments, defining the model architecture. Instantiating a configuration with the defaults will yield a similar configuration to that of the SuperPoint [magic-leap-community/superpoint](https://huggingface.co/magic-leap-community/superpoint) architecture. Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the documentation from [`PretrainedConfig`] for more information. Args: encoder_hidden_sizes (`List`, *optional*, defaults to `[64, 64, 128, 128]`): The number of channels in each convolutional layer in the encoder. decoder_hidden_size (`int`, *optional*, defaults to 256): The hidden size of the decoder. keypoint_decoder_dim (`int`, *optional*, defaults to 65): The output dimension of the keypoint decoder. descriptor_decoder_dim (`int`, *optional*, defaults to 256): The output dimension of the descriptor decoder. keypoint_threshold (`float`, *optional*, defaults to 0.005): The threshold to use for extracting keypoints. max_keypoints (`int`, *optional*, defaults to -1): The maximum number of keypoints to extract. If `-1`, will extract all keypoints. nms_radius (`int`, *optional*, defaults to 4): The radius for non-maximum suppression. border_removal_distance (`int`, *optional*, defaults to 4): The distance from the border to remove keypoints. initializer_range (`float`, *optional*, defaults to 0.02): The standard deviation of the truncated_normal_initializer for initializing all weight matrices. Example: ```python >>> from transformers import SuperPointConfig, SuperPointForKeypointDetection >>> # Initializing a SuperPoint superpoint style configuration >>> configuration = SuperPointConfig() >>> # Initializing a model from the superpoint style configuration >>> model = SuperPointForKeypointDetection(configuration) >>> # Accessing the model configuration >>> configuration = model.config ```""" model_type = "superpoint" def __init__( self, encoder_hidden_sizes: List[int] = [64, 64, 128, 128], decoder_hidden_size: int = 256, keypoint_decoder_dim: int = 65, descriptor_decoder_dim: int = 256, keypoint_threshold: float = 0.005, max_keypoints: int = -1, nms_radius: int = 4, border_removal_distance: int = 4, initializer_range=0.02, **kwargs, ): self.encoder_hidden_sizes = encoder_hidden_sizes self.decoder_hidden_size = decoder_hidden_size self.keypoint_decoder_dim = keypoint_decoder_dim self.descriptor_decoder_dim = descriptor_decoder_dim self.keypoint_threshold = keypoint_threshold self.max_keypoints = max_keypoints self.nms_radius = nms_radius self.border_removal_distance = border_removal_distance self.initializer_range = initializer_range super().__init__(**kwargs)