# coding=utf-8 # Copyright 2022 The HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Speech processor class for Whisper """ from ...processing_utils import ProcessorMixin class WhisperProcessor(ProcessorMixin): r""" Constructs a Whisper processor which wraps a Whisper feature extractor and a Whisper tokenizer into a single processor. [`WhisperProcessor`] offers all the functionalities of [`WhisperFeatureExtractor`] and [`WhisperTokenizer`]. See the [`~WhisperProcessor.__call__`] and [`~WhisperProcessor.decode`] for more information. Args: feature_extractor (`WhisperFeatureExtractor`): An instance of [`WhisperFeatureExtractor`]. The feature extractor is a required input. tokenizer (`WhisperTokenizer`): An instance of [`WhisperTokenizer`]. The tokenizer is a required input. """ feature_extractor_class = "WhisperFeatureExtractor" tokenizer_class = "WhisperTokenizer" def __init__(self, feature_extractor, tokenizer): super().__init__(feature_extractor, tokenizer) self.current_processor = self.feature_extractor self._in_target_context_manager = False def get_decoder_prompt_ids(self, task=None, language=None, no_timestamps=True): return self.tokenizer.get_decoder_prompt_ids(task=task, language=language, no_timestamps=no_timestamps) def __call__(self, *args, **kwargs): """ Forwards the `audio` argument to WhisperFeatureExtractor's [`~WhisperFeatureExtractor.__call__`] and the `text` argument to [`~WhisperTokenizer.__call__`]. Please refer to the doctsring of the above two methods for more information. """ # For backward compatibility if self._in_target_context_manager: return self.current_processor(*args, **kwargs) audio = kwargs.pop("audio", None) sampling_rate = kwargs.pop("sampling_rate", None) text = kwargs.pop("text", None) if len(args) > 0: audio = args[0] args = args[1:] if audio is None and text is None: raise ValueError("You need to specify either an `audio` or `text` input to process.") if audio is not None: inputs = self.feature_extractor(audio, *args, sampling_rate=sampling_rate, **kwargs) if text is not None: encodings = self.tokenizer(text, **kwargs) if text is None: return inputs elif audio is None: return encodings else: inputs["labels"] = encodings["input_ids"] return inputs def batch_decode(self, *args, **kwargs): """ This method forwards all its arguments to WhisperTokenizer's [`~PreTrainedTokenizer.batch_decode`]. Please refer to the docstring of this method for more information. """ return self.tokenizer.batch_decode(*args, **kwargs) def decode(self, *args, **kwargs): """ This method forwards all its arguments to WhisperTokenizer's [`~PreTrainedTokenizer.decode`]. Please refer to the docstring of this method for more information. """ return self.tokenizer.decode(*args, **kwargs) def get_prompt_ids(self, text: str, return_tensors="np"): return self.tokenizer.get_prompt_ids(text, return_tensors=return_tensors)