# coding=utf-8 # Copyright 2019-present, Facebook, Inc and the HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ XLM configuration""" from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging logger = logging.get_logger(__name__) from ..deprecated._archive_maps import XLM_PRETRAINED_CONFIG_ARCHIVE_MAP # noqa: F401, E402 class XLMConfig(PretrainedConfig): """ This is the configuration class to store the configuration of a [`XLMModel`] or a [`TFXLMModel`]. It is used to instantiate a XLM model according to the specified arguments, defining the model architecture. Instantiating a configuration with the defaults will yield a similar configuration to that of the [FacebookAI/xlm-mlm-en-2048](https://huggingface.co/FacebookAI/xlm-mlm-en-2048) architecture. Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the documentation from [`PretrainedConfig`] for more information. Args: vocab_size (`int`, *optional*, defaults to 30145): Vocabulary size of the BERT model. Defines the number of different tokens that can be represented by the `inputs_ids` passed when calling [`XLMModel`] or [`TFXLMModel`]. emb_dim (`int`, *optional*, defaults to 2048): Dimensionality of the encoder layers and the pooler layer. n_layer (`int`, *optional*, defaults to 12): Number of hidden layers in the Transformer encoder. n_head (`int`, *optional*, defaults to 16): Number of attention heads for each attention layer in the Transformer encoder. dropout (`float`, *optional*, defaults to 0.1): The dropout probability for all fully connected layers in the embeddings, encoder, and pooler. attention_dropout (`float`, *optional*, defaults to 0.1): The dropout probability for the attention mechanism gelu_activation (`bool`, *optional*, defaults to `True`): Whether or not to use *gelu* for the activations instead of *relu*. sinusoidal_embeddings (`bool`, *optional*, defaults to `False`): Whether or not to use sinusoidal positional embeddings instead of absolute positional embeddings. causal (`bool`, *optional*, defaults to `False`): Whether or not the model should behave in a causal manner. Causal models use a triangular attention mask in order to only attend to the left-side context instead if a bidirectional context. asm (`bool`, *optional*, defaults to `False`): Whether or not to use an adaptive log softmax projection layer instead of a linear layer for the prediction layer. n_langs (`int`, *optional*, defaults to 1): The number of languages the model handles. Set to 1 for monolingual models. use_lang_emb (`bool`, *optional*, defaults to `True`) Whether to use language embeddings. Some models use additional language embeddings, see [the multilingual models page](http://huggingface.co/transformers/multilingual.html#xlm-language-embeddings) for information on how to use them. max_position_embeddings (`int`, *optional*, defaults to 512): The maximum sequence length that this model might ever be used with. Typically set this to something large just in case (e.g., 512 or 1024 or 2048). embed_init_std (`float`, *optional*, defaults to 2048^-0.5): The standard deviation of the truncated_normal_initializer for initializing the embedding matrices. init_std (`int`, *optional*, defaults to 50257): The standard deviation of the truncated_normal_initializer for initializing all weight matrices except the embedding matrices. layer_norm_eps (`float`, *optional*, defaults to 1e-12): The epsilon used by the layer normalization layers. bos_index (`int`, *optional*, defaults to 0): The index of the beginning of sentence token in the vocabulary. eos_index (`int`, *optional*, defaults to 1): The index of the end of sentence token in the vocabulary. pad_index (`int`, *optional*, defaults to 2): The index of the padding token in the vocabulary. unk_index (`int`, *optional*, defaults to 3): The index of the unknown token in the vocabulary. mask_index (`int`, *optional*, defaults to 5): The index of the masking token in the vocabulary. is_encoder(`bool`, *optional*, defaults to `True`): Whether or not the initialized model should be a transformer encoder or decoder as seen in Vaswani et al. summary_type (`string`, *optional*, defaults to "first"): Argument used when doing sequence summary. Used in the sequence classification and multiple choice models. Has to be one of the following options: - `"last"`: Take the last token hidden state (like XLNet). - `"first"`: Take the first token hidden state (like BERT). - `"mean"`: Take the mean of all tokens hidden states. - `"cls_index"`: Supply a Tensor of classification token position (like GPT/GPT-2). - `"attn"`: Not implemented now, use multi-head attention. summary_use_proj (`bool`, *optional*, defaults to `True`): Argument used when doing sequence summary. Used in the sequence classification and multiple choice models. Whether or not to add a projection after the vector extraction. summary_activation (`str`, *optional*): Argument used when doing sequence summary. Used in the sequence classification and multiple choice models. Pass `"tanh"` for a tanh activation to the output, any other value will result in no activation. summary_proj_to_labels (`bool`, *optional*, defaults to `True`): Used in the sequence classification and multiple choice models. Whether the projection outputs should have `config.num_labels` or `config.hidden_size` classes. summary_first_dropout (`float`, *optional*, defaults to 0.1): Used in the sequence classification and multiple choice models. The dropout ratio to be used after the projection and activation. start_n_top (`int`, *optional*, defaults to 5): Used in the SQuAD evaluation script. end_n_top (`int`, *optional*, defaults to 5): Used in the SQuAD evaluation script. mask_token_id (`int`, *optional*, defaults to 0): Model agnostic parameter to identify masked tokens when generating text in an MLM context. lang_id (`int`, *optional*, defaults to 1): The ID of the language used by the model. This parameter is used when generating text in a given language. Examples: ```python >>> from transformers import XLMConfig, XLMModel >>> # Initializing a XLM configuration >>> configuration = XLMConfig() >>> # Initializing a model (with random weights) from the configuration >>> model = XLMModel(configuration) >>> # Accessing the model configuration >>> configuration = model.config ```""" model_type = "xlm" attribute_map = { "hidden_size": "emb_dim", "num_attention_heads": "n_heads", "num_hidden_layers": "n_layers", "n_words": "vocab_size", # For backward compatibility } def __init__( self, vocab_size=30145, emb_dim=2048, n_layers=12, n_heads=16, dropout=0.1, attention_dropout=0.1, gelu_activation=True, sinusoidal_embeddings=False, causal=False, asm=False, n_langs=1, use_lang_emb=True, max_position_embeddings=512, embed_init_std=2048**-0.5, layer_norm_eps=1e-12, init_std=0.02, bos_index=0, eos_index=1, pad_index=2, unk_index=3, mask_index=5, is_encoder=True, summary_type="first", summary_use_proj=True, summary_activation=None, summary_proj_to_labels=True, summary_first_dropout=0.1, start_n_top=5, end_n_top=5, mask_token_id=0, lang_id=0, pad_token_id=2, bos_token_id=0, **kwargs, ): """Constructs XLMConfig.""" self.vocab_size = vocab_size self.emb_dim = emb_dim self.n_layers = n_layers self.n_heads = n_heads self.dropout = dropout self.attention_dropout = attention_dropout self.gelu_activation = gelu_activation self.sinusoidal_embeddings = sinusoidal_embeddings self.causal = causal self.asm = asm self.n_langs = n_langs self.use_lang_emb = use_lang_emb self.layer_norm_eps = layer_norm_eps self.bos_index = bos_index self.eos_index = eos_index self.pad_index = pad_index self.unk_index = unk_index self.mask_index = mask_index self.is_encoder = is_encoder self.max_position_embeddings = max_position_embeddings self.embed_init_std = embed_init_std self.init_std = init_std self.summary_type = summary_type self.summary_use_proj = summary_use_proj self.summary_activation = summary_activation self.summary_proj_to_labels = summary_proj_to_labels self.summary_first_dropout = summary_first_dropout self.start_n_top = start_n_top self.end_n_top = end_n_top self.mask_token_id = mask_token_id self.lang_id = lang_id if "n_words" in kwargs: self.n_words = kwargs["n_words"] super().__init__(pad_token_id=pad_token_id, bos_token_id=bos_token_id, **kwargs) # Copied from transformers.models.bert.configuration_bert.BertOnnxConfig class XLMOnnxConfig(OnnxConfig): @property def inputs(self) -> Mapping[str, Mapping[int, str]]: if self.task == "multiple-choice": dynamic_axis = {0: "batch", 1: "choice", 2: "sequence"} else: dynamic_axis = {0: "batch", 1: "sequence"} return OrderedDict( [ ("input_ids", dynamic_axis), ("attention_mask", dynamic_axis), ("token_type_ids", dynamic_axis), ] )