#!/usr/bin/env python3 # -*- coding: utf-8 -*- import argparse import contextlib import sys from argparse import RawTextHelpFormatter # pylint: disable=redefined-outer-name, unused-argument from pathlib import Path description = """ Synthesize speech on command line. You can either use your trained model or choose a model from the provided list. If you don't specify any models, then it uses LJSpeech based English model. #### Single Speaker Models - List provided models: ``` $ tts --list_models ``` - Get model info (for both tts_models and vocoder_models): - Query by type/name: The model_info_by_name uses the name as it from the --list_models. ``` $ tts --model_info_by_name "///" ``` For example: ``` $ tts --model_info_by_name tts_models/tr/common-voice/glow-tts $ tts --model_info_by_name vocoder_models/en/ljspeech/hifigan_v2 ``` - Query by type/idx: The model_query_idx uses the corresponding idx from --list_models. ``` $ tts --model_info_by_idx "/" ``` For example: ``` $ tts --model_info_by_idx tts_models/3 ``` - Query info for model info by full name: ``` $ tts --model_info_by_name "///" ``` - Run TTS with default models: ``` $ tts --text "Text for TTS" --out_path output/path/speech.wav ``` - Run TTS and pipe out the generated TTS wav file data: ``` $ tts --text "Text for TTS" --pipe_out --out_path output/path/speech.wav | aplay ``` - Run a TTS model with its default vocoder model: ``` $ tts --text "Text for TTS" --model_name "///" --out_path output/path/speech.wav ``` For example: ``` $ tts --text "Text for TTS" --model_name "tts_models/en/ljspeech/glow-tts" --out_path output/path/speech.wav ``` - Run with specific TTS and vocoder models from the list: ``` $ tts --text "Text for TTS" --model_name "///" --vocoder_name "///" --out_path output/path/speech.wav ``` For example: ``` $ tts --text "Text for TTS" --model_name "tts_models/en/ljspeech/glow-tts" --vocoder_name "vocoder_models/en/ljspeech/univnet" --out_path output/path/speech.wav ``` - Run your own TTS model (Using Griffin-Lim Vocoder): ``` $ tts --text "Text for TTS" --model_path path/to/model.pth --config_path path/to/config.json --out_path output/path/speech.wav ``` - Run your own TTS and Vocoder models: ``` $ tts --text "Text for TTS" --model_path path/to/model.pth --config_path path/to/config.json --out_path output/path/speech.wav --vocoder_path path/to/vocoder.pth --vocoder_config_path path/to/vocoder_config.json ``` #### Multi-speaker Models - List the available speakers and choose a among them: ``` $ tts --model_name "//" --list_speaker_idxs ``` - Run the multi-speaker TTS model with the target speaker ID: ``` $ tts --text "Text for TTS." --out_path output/path/speech.wav --model_name "//" --speaker_idx ``` - Run your own multi-speaker TTS model: ``` $ tts --text "Text for TTS" --out_path output/path/speech.wav --model_path path/to/model.pth --config_path path/to/config.json --speakers_file_path path/to/speaker.json --speaker_idx ``` ### Voice Conversion Models ``` $ tts --out_path output/path/speech.wav --model_name "//" --source_wav --target_wav ``` """ def str2bool(v): if isinstance(v, bool): return v if v.lower() in ("yes", "true", "t", "y", "1"): return True if v.lower() in ("no", "false", "f", "n", "0"): return False raise argparse.ArgumentTypeError("Boolean value expected.") def main(): parser = argparse.ArgumentParser( description=description.replace(" ```\n", ""), formatter_class=RawTextHelpFormatter, ) parser.add_argument( "--list_models", type=str2bool, nargs="?", const=True, default=False, help="list available pre-trained TTS and vocoder models.", ) parser.add_argument( "--model_info_by_idx", type=str, default=None, help="model info using query format: /", ) parser.add_argument( "--model_info_by_name", type=str, default=None, help="model info using query format: ///", ) parser.add_argument("--text", type=str, default=None, help="Text to generate speech.") # Args for running pre-trained TTS models. parser.add_argument( "--model_name", type=str, default="tts_models/en/ljspeech/tacotron2-DDC", help="Name of one of the pre-trained TTS models in format //", ) parser.add_argument( "--vocoder_name", type=str, default=None, help="Name of one of the pre-trained vocoder models in format //", ) # Args for running custom models parser.add_argument("--config_path", default=None, type=str, help="Path to model config file.") parser.add_argument( "--model_path", type=str, default=None, help="Path to model file.", ) parser.add_argument( "--out_path", type=str, default="tts_output.wav", help="Output wav file path.", ) parser.add_argument("--use_cuda", type=bool, help="Run model on CUDA.", default=False) parser.add_argument("--device", type=str, help="Device to run model on.", default="cpu") parser.add_argument( "--vocoder_path", type=str, help="Path to vocoder model file. If it is not defined, model uses GL as vocoder. Please make sure that you installed vocoder library before (WaveRNN).", default=None, ) parser.add_argument("--vocoder_config_path", type=str, help="Path to vocoder model config file.", default=None) parser.add_argument( "--encoder_path", type=str, help="Path to speaker encoder model file.", default=None, ) parser.add_argument("--encoder_config_path", type=str, help="Path to speaker encoder config file.", default=None) parser.add_argument( "--pipe_out", help="stdout the generated TTS wav file for shell pipe.", type=str2bool, nargs="?", const=True, default=False, ) # args for multi-speaker synthesis parser.add_argument("--speakers_file_path", type=str, help="JSON file for multi-speaker model.", default=None) parser.add_argument("--language_ids_file_path", type=str, help="JSON file for multi-lingual model.", default=None) parser.add_argument( "--speaker_idx", type=str, help="Target speaker ID for a multi-speaker TTS model.", default=None, ) parser.add_argument( "--language_idx", type=str, help="Target language ID for a multi-lingual TTS model.", default=None, ) parser.add_argument( "--speaker_wav", nargs="+", help="wav file(s) to condition a multi-speaker TTS model with a Speaker Encoder. You can give multiple file paths. The d_vectors is computed as their average.", default=None, ) parser.add_argument("--gst_style", help="Wav path file for GST style reference.", default=None) parser.add_argument( "--capacitron_style_wav", type=str, help="Wav path file for Capacitron prosody reference.", default=None ) parser.add_argument("--capacitron_style_text", type=str, help="Transcription of the reference.", default=None) parser.add_argument( "--list_speaker_idxs", help="List available speaker ids for the defined multi-speaker model.", type=str2bool, nargs="?", const=True, default=False, ) parser.add_argument( "--list_language_idxs", help="List available language ids for the defined multi-lingual model.", type=str2bool, nargs="?", const=True, default=False, ) # aux args parser.add_argument( "--save_spectogram", type=bool, help="If true save raw spectogram for further (vocoder) processing in out_path.", default=False, ) parser.add_argument( "--reference_wav", type=str, help="Reference wav file to convert in the voice of the speaker_idx or speaker_wav", default=None, ) parser.add_argument( "--reference_speaker_idx", type=str, help="speaker ID of the reference_wav speaker (If not provided the embedding will be computed using the Speaker Encoder).", default=None, ) parser.add_argument( "--progress_bar", type=str2bool, help="If true shows a progress bar for the model download. Defaults to True", default=True, ) # voice conversion args parser.add_argument( "--source_wav", type=str, default=None, help="Original audio file to convert in the voice of the target_wav", ) parser.add_argument( "--target_wav", type=str, default=None, help="Target audio file to convert in the voice of the source_wav", ) parser.add_argument( "--voice_dir", type=str, default=None, help="Voice dir for tortoise model", ) args = parser.parse_args() # print the description if either text or list_models is not set check_args = [ args.text, args.list_models, args.list_speaker_idxs, args.list_language_idxs, args.reference_wav, args.model_info_by_idx, args.model_info_by_name, args.source_wav, args.target_wav, ] if not any(check_args): parser.parse_args(["-h"]) pipe_out = sys.stdout if args.pipe_out else None with contextlib.redirect_stdout(None if args.pipe_out else sys.stdout): # Late-import to make things load faster from TTS.api import TTS from TTS.utils.manage import ModelManager from TTS.utils.synthesizer import Synthesizer # load model manager path = Path(__file__).parent / "../.models.json" manager = ModelManager(path, progress_bar=args.progress_bar) api = TTS() tts_path = None tts_config_path = None speakers_file_path = None language_ids_file_path = None vocoder_path = None vocoder_config_path = None encoder_path = None encoder_config_path = None vc_path = None vc_config_path = None model_dir = None # CASE1 #list : list pre-trained TTS models if args.list_models: manager.list_models() sys.exit() # CASE2 #info : model info for pre-trained TTS models if args.model_info_by_idx: model_query = args.model_info_by_idx manager.model_info_by_idx(model_query) sys.exit() if args.model_info_by_name: model_query_full_name = args.model_info_by_name manager.model_info_by_full_name(model_query_full_name) sys.exit() # CASE3: load pre-trained model paths if args.model_name is not None and not args.model_path: model_path, config_path, model_item = manager.download_model(args.model_name) # tts model if model_item["model_type"] == "tts_models": tts_path = model_path tts_config_path = config_path if "default_vocoder" in model_item: args.vocoder_name = ( model_item["default_vocoder"] if args.vocoder_name is None else args.vocoder_name ) # voice conversion model if model_item["model_type"] == "voice_conversion_models": vc_path = model_path vc_config_path = config_path # tts model with multiple files to be loaded from the directory path if model_item.get("author", None) == "fairseq" or isinstance(model_item["model_url"], list): model_dir = model_path tts_path = None tts_config_path = None args.vocoder_name = None # load vocoder if args.vocoder_name is not None and not args.vocoder_path: vocoder_path, vocoder_config_path, _ = manager.download_model(args.vocoder_name) # CASE4: set custom model paths if args.model_path is not None: tts_path = args.model_path tts_config_path = args.config_path speakers_file_path = args.speakers_file_path language_ids_file_path = args.language_ids_file_path if args.vocoder_path is not None: vocoder_path = args.vocoder_path vocoder_config_path = args.vocoder_config_path if args.encoder_path is not None: encoder_path = args.encoder_path encoder_config_path = args.encoder_config_path device = args.device if args.use_cuda: device = "cuda" # load models synthesizer = Synthesizer( tts_path, tts_config_path, speakers_file_path, language_ids_file_path, vocoder_path, vocoder_config_path, encoder_path, encoder_config_path, vc_path, vc_config_path, model_dir, args.voice_dir, ).to(device) # query speaker ids of a multi-speaker model. if args.list_speaker_idxs: print( " > Available speaker ids: (Set --speaker_idx flag to one of these values to use the multi-speaker model." ) print(synthesizer.tts_model.speaker_manager.name_to_id) return # query langauge ids of a multi-lingual model. if args.list_language_idxs: print( " > Available language ids: (Set --language_idx flag to one of these values to use the multi-lingual model." ) print(synthesizer.tts_model.language_manager.name_to_id) return # check the arguments against a multi-speaker model. if synthesizer.tts_speakers_file and (not args.speaker_idx and not args.speaker_wav): print( " [!] Looks like you use a multi-speaker model. Define `--speaker_idx` to " "select the target speaker. You can list the available speakers for this model by `--list_speaker_idxs`." ) return # RUN THE SYNTHESIS if args.text: print(" > Text: {}".format(args.text)) # kick it if tts_path is not None: wav = synthesizer.tts( args.text, speaker_name=args.speaker_idx, language_name=args.language_idx, speaker_wav=args.speaker_wav, reference_wav=args.reference_wav, style_wav=args.capacitron_style_wav, style_text=args.capacitron_style_text, reference_speaker_name=args.reference_speaker_idx, ) elif vc_path is not None: wav = synthesizer.voice_conversion( source_wav=args.source_wav, target_wav=args.target_wav, ) elif model_dir is not None: wav = synthesizer.tts( args.text, speaker_name=args.speaker_idx, language_name=args.language_idx, speaker_wav=args.speaker_wav ) # save the results print(" > Saving output to {}".format(args.out_path)) synthesizer.save_wav(wav, args.out_path, pipe_out=pipe_out) if __name__ == "__main__": main()