from typing import Optional, Dict, cast import chainer from . import RearrangeMixin, ReduceMixin from ._einmix import _EinmixMixin __author__ = "Alex Rogozhnikov" class Rearrange(RearrangeMixin, chainer.Link): def __call__(self, x): return self._apply_recipe(x) class Reduce(ReduceMixin, chainer.Link): def __call__(self, x): return self._apply_recipe(x) class EinMix(_EinmixMixin, chainer.Link): def _create_parameters(self, weight_shape, weight_bound, bias_shape, bias_bound): uniform = chainer.variable.initializers.Uniform with self.init_scope(): self.weight = chainer.variable.Parameter(uniform(weight_bound), weight_shape) if bias_shape is not None: self.bias = chainer.variable.Parameter(uniform(bias_bound), bias_shape) else: self.bias = None def _create_rearrange_layers( self, pre_reshape_pattern: Optional[str], pre_reshape_lengths: Optional[Dict], post_reshape_pattern: Optional[str], post_reshape_lengths: Optional[Dict], ): self.pre_rearrange = None if pre_reshape_pattern is not None: self.pre_rearrange = Rearrange(pre_reshape_pattern, **cast(dict, pre_reshape_lengths)) self.post_rearrange = None if post_reshape_pattern is not None: self.post_rearrange = Rearrange(post_reshape_pattern, **cast(dict, post_reshape_lengths)) def __call__(self, input): if self.pre_rearrange is not None: input = self.pre_rearrange(input) result = chainer.functions.einsum(self.einsum_pattern, input, self.weight) if self.bias is not None: result = result + self.bias if self.post_rearrange is not None: result = self.post_rearrange(result) return result