from typing import Optional, Dict, cast import paddle from . import RearrangeMixin, ReduceMixin from ._einmix import _EinmixMixin __author__ = "PaddlePaddle" class Rearrange(RearrangeMixin, paddle.nn.Layer): def forward(self, input): return self._apply_recipe(input) class Reduce(ReduceMixin, paddle.nn.Layer): def forward(self, input): return self._apply_recipe(input) class EinMix(_EinmixMixin, paddle.nn.Layer): def _create_parameters(self, weight_shape, weight_bound, bias_shape, bias_bound): self.weight = self.create_parameter( weight_shape, default_initializer=paddle.nn.initializer.Uniform(-weight_bound, weight_bound) ) if bias_shape is not None: self.bias = self.create_parameter( bias_shape, default_initializer=paddle.nn.initializer.Uniform(-bias_bound, bias_bound) ) else: self.bias = None def _create_rearrange_layers( self, pre_reshape_pattern: Optional[str], pre_reshape_lengths: Optional[Dict], post_reshape_pattern: Optional[str], post_reshape_lengths: Optional[Dict], ): self.pre_rearrange = None if pre_reshape_pattern is not None: self.pre_rearrange = Rearrange(pre_reshape_pattern, **cast(dict, pre_reshape_lengths)) self.post_rearrange = None if post_reshape_pattern is not None: self.post_rearrange = Rearrange(post_reshape_pattern, **cast(dict, post_reshape_lengths)) def forward(self, input): if self.pre_rearrange is not None: input = self.pre_rearrange(input) result = paddle.einsum(self.einsum_pattern, input, self.weight) if self.bias is not None: result += self.bias if self.post_rearrange is not None: result = self.post_rearrange(result) return result