# -*- coding: utf-8 -*- # imageio is distributed under the terms of the (new) BSD License. # This code was taken from https://github.com/almarklein/visvis/blob/master/vvmovie/images2swf.py # styletest: ignore E261 """ Provides a function (write_swf) to store a series of numpy arrays in an SWF movie, that can be played on a wide range of OS's. In desperation of wanting to share animated images, and then lacking a good writer for animated gif or .avi, I decided to look into SWF. This format is very well documented. This is a pure python module to create an SWF file that shows a series of images. The images are stored using the DEFLATE algorithm (same as PNG and ZIP and which is included in the standard Python distribution). As this compression algorithm is much more effective than that used in GIF images, we obtain better quality (24 bit colors + alpha channel) while still producesing smaller files (a test showed ~75%). Although SWF also allows for JPEG compression, doing so would probably require a third party library for the JPEG encoding/decoding, we could perhaps do this via Pillow or freeimage. sources and tools: - SWF on wikipedia - Adobes "SWF File Format Specification" version 10 (http://www.adobe.com/devnet/swf/pdf/swf_file_format_spec_v10.pdf) - swftools (swfdump in specific) for debugging - iwisoft swf2avi can be used to convert swf to avi/mpg/flv with really good quality, while file size is reduced with factors 20-100. A good program in my opinion. The free version has the limitation of a watermark in the upper left corner. """ import os import zlib import time # noqa import logging import numpy as np logger = logging.getLogger(__name__) # todo: use Pillow to support reading JPEG images from SWF? # Base functions and classes class BitArray: """Dynamic array of bits that automatically resizes with factors of two. Append bits using .append() or += You can reverse bits using .reverse() """ def __init__(self, initvalue=None): self.data = np.zeros((16,), dtype=np.uint8) self._len = 0 if initvalue is not None: self.append(initvalue) def __len__(self): return self._len # self.data.shape[0] def __repr__(self): return self.data[: self._len].tobytes().decode("ascii") def _checkSize(self): # check length... grow if necessary arraylen = self.data.shape[0] if self._len >= arraylen: tmp = np.zeros((arraylen * 2,), dtype=np.uint8) tmp[: self._len] = self.data[: self._len] self.data = tmp def __add__(self, value): self.append(value) return self def append(self, bits): # check input if isinstance(bits, BitArray): bits = str(bits) if isinstance(bits, int): # pragma: no cover - we dont use it bits = str(bits) if not isinstance(bits, str): # pragma: no cover raise ValueError("Append bits as strings or integers!") # add bits for bit in bits: self.data[self._len] = ord(bit) self._len += 1 self._checkSize() def reverse(self): """In-place reverse.""" tmp = self.data[: self._len].copy() self.data[: self._len] = tmp[::-1] def tobytes(self): """Convert to bytes. If necessary, zeros are padded to the end (right side). """ bits = str(self) # determine number of bytes nbytes = 0 while nbytes * 8 < len(bits): nbytes += 1 # pad bits = bits.ljust(nbytes * 8, "0") # go from bits to bytes bb = bytes() for i in range(nbytes): tmp = int(bits[i * 8 : (i + 1) * 8], 2) bb += int2uint8(tmp) # done return bb def int2uint32(i): return int(i).to_bytes(4, "little") def int2uint16(i): return int(i).to_bytes(2, "little") def int2uint8(i): return int(i).to_bytes(1, "little") def int2bits(i, n=None): """convert int to a string of bits (0's and 1's in a string), pad to n elements. Convert back using int(ss,2).""" ii = i # make bits bb = BitArray() while ii > 0: bb += str(ii % 2) ii = ii >> 1 bb.reverse() # justify if n is not None: if len(bb) > n: # pragma: no cover raise ValueError("int2bits fail: len larger than padlength.") bb = str(bb).rjust(n, "0") # done return BitArray(bb) def bits2int(bb, n=8): # Init value = "" # Get value in bits for i in range(len(bb)): b = bb[i : i + 1] tmp = bin(ord(b))[2:] # value += tmp.rjust(8,'0') value = tmp.rjust(8, "0") + value # Make decimal return int(value[:n], 2) def get_type_and_len(bb): """bb should be 6 bytes at least Return (type, length, length_of_full_tag) """ # Init value = "" # Get first 16 bits for i in range(2): b = bb[i : i + 1] tmp = bin(ord(b))[2:] # value += tmp.rjust(8,'0') value = tmp.rjust(8, "0") + value # Get type and length type = int(value[:10], 2) L = int(value[10:], 2) L2 = L + 2 # Long tag header? if L == 63: # '111111' value = "" for i in range(2, 6): b = bb[i : i + 1] # becomes a single-byte bytes() tmp = bin(ord(b))[2:] # value += tmp.rjust(8,'0') value = tmp.rjust(8, "0") + value L = int(value, 2) L2 = L + 6 # Done return type, L, L2 def signedint2bits(i, n=None): """convert signed int to a string of bits (0's and 1's in a string), pad to n elements. Negative numbers are stored in 2's complement bit patterns, thus positive numbers always start with a 0. """ # negative number? ii = i if i < 0: # A negative number, -n, is represented as the bitwise opposite of ii = abs(ii) - 1 # the positive-zero number n-1. # make bits bb = BitArray() while ii > 0: bb += str(ii % 2) ii = ii >> 1 bb.reverse() # justify bb = "0" + str(bb) # always need the sign bit in front if n is not None: if len(bb) > n: # pragma: no cover raise ValueError("signedint2bits fail: len larger than padlength.") bb = bb.rjust(n, "0") # was it negative? (then opposite bits) if i < 0: bb = bb.replace("0", "x").replace("1", "0").replace("x", "1") # done return BitArray(bb) def twits2bits(arr): """Given a few (signed) numbers, store them as compactly as possible in the wat specifief by the swf format. The numbers are multiplied by 20, assuming they are twits. Can be used to make the RECT record. """ # first determine length using non justified bit strings maxlen = 1 for i in arr: tmp = len(signedint2bits(i * 20)) if tmp > maxlen: maxlen = tmp # build array bits = int2bits(maxlen, 5) for i in arr: bits += signedint2bits(i * 20, maxlen) return bits def floats2bits(arr): """Given a few (signed) numbers, convert them to bits, stored as FB (float bit values). We always use 16.16. Negative numbers are not (yet) possible, because I don't know how the're implemented (ambiguity). """ bits = int2bits(31, 5) # 32 does not fit in 5 bits! for i in arr: if i < 0: # pragma: no cover raise ValueError("Dit not implement negative floats!") i1 = int(i) i2 = i - i1 bits += int2bits(i1, 15) bits += int2bits(i2 * 2**16, 16) return bits # Base Tag class Tag: def __init__(self): self.bytes = bytes() self.tagtype = -1 def process_tag(self): """Implement this to create the tag.""" raise NotImplementedError() def get_tag(self): """Calls processTag and attaches the header.""" self.process_tag() # tag to binary bits = int2bits(self.tagtype, 10) # complete header uint16 thing bits += "1" * 6 # = 63 = 0x3f # make uint16 bb = int2uint16(int(str(bits), 2)) # now add 32bit length descriptor bb += int2uint32(len(self.bytes)) # done, attach and return bb += self.bytes return bb def make_rect_record(self, xmin, xmax, ymin, ymax): """Simply uses makeCompactArray to produce a RECT Record.""" return twits2bits([xmin, xmax, ymin, ymax]) def make_matrix_record(self, scale_xy=None, rot_xy=None, trans_xy=None): # empty matrix? if scale_xy is None and rot_xy is None and trans_xy is None: return "0" * 8 # init bits = BitArray() # scale if scale_xy: bits += "1" bits += floats2bits([scale_xy[0], scale_xy[1]]) else: bits += "0" # rotation if rot_xy: bits += "1" bits += floats2bits([rot_xy[0], rot_xy[1]]) else: bits += "0" # translation (no flag here) if trans_xy: bits += twits2bits([trans_xy[0], trans_xy[1]]) else: bits += twits2bits([0, 0]) # done return bits # Control tags class ControlTag(Tag): def __init__(self): Tag.__init__(self) class FileAttributesTag(ControlTag): def __init__(self): ControlTag.__init__(self) self.tagtype = 69 def process_tag(self): self.bytes = "\x00".encode("ascii") * (1 + 3) class ShowFrameTag(ControlTag): def __init__(self): ControlTag.__init__(self) self.tagtype = 1 def process_tag(self): self.bytes = bytes() class SetBackgroundTag(ControlTag): """Set the color in 0-255, or 0-1 (if floats given).""" def __init__(self, *rgb): self.tagtype = 9 if len(rgb) == 1: rgb = rgb[0] self.rgb = rgb def process_tag(self): bb = bytes() for i in range(3): clr = self.rgb[i] if isinstance(clr, float): # pragma: no cover - not used clr = clr * 255 bb += int2uint8(clr) self.bytes = bb class DoActionTag(Tag): def __init__(self, action="stop"): Tag.__init__(self) self.tagtype = 12 self.actions = [action] def append(self, action): # pragma: no cover - not used self.actions.append(action) def process_tag(self): bb = bytes() for action in self.actions: action = action.lower() if action == "stop": bb += "\x07".encode("ascii") elif action == "play": # pragma: no cover - not used bb += "\x06".encode("ascii") else: # pragma: no cover logger.warning("unknown action: %s" % action) bb += int2uint8(0) self.bytes = bb # Definition tags class DefinitionTag(Tag): counter = 0 # to give automatically id's def __init__(self): Tag.__init__(self) DefinitionTag.counter += 1 self.id = DefinitionTag.counter # id in dictionary class BitmapTag(DefinitionTag): def __init__(self, im): DefinitionTag.__init__(self) self.tagtype = 36 # DefineBitsLossless2 # convert image (note that format is ARGB) # even a grayscale image is stored in ARGB, nevertheless, # the fabilous deflate compression will make it that not much # more data is required for storing (25% or so, and less than 10% # when storing RGB as ARGB). if len(im.shape) == 3: if im.shape[2] in [3, 4]: tmp = np.ones((im.shape[0], im.shape[1], 4), dtype=np.uint8) * 255 for i in range(3): tmp[:, :, i + 1] = im[:, :, i] if im.shape[2] == 4: tmp[:, :, 0] = im[:, :, 3] # swap channel where alpha is else: # pragma: no cover raise ValueError("Invalid shape to be an image.") elif len(im.shape) == 2: tmp = np.ones((im.shape[0], im.shape[1], 4), dtype=np.uint8) * 255 for i in range(3): tmp[:, :, i + 1] = im[:, :] else: # pragma: no cover raise ValueError("Invalid shape to be an image.") # we changed the image to uint8 4 channels. # now compress! self._data = zlib.compress(tmp.tobytes(), zlib.DEFLATED) self.imshape = im.shape def process_tag(self): # build tag bb = bytes() bb += int2uint16(self.id) # CharacterID bb += int2uint8(5) # BitmapFormat bb += int2uint16(self.imshape[1]) # BitmapWidth bb += int2uint16(self.imshape[0]) # BitmapHeight bb += self._data # ZlibBitmapData self.bytes = bb class PlaceObjectTag(ControlTag): def __init__(self, depth, idToPlace=None, xy=(0, 0), move=False): ControlTag.__init__(self) self.tagtype = 26 self.depth = depth self.idToPlace = idToPlace self.xy = xy self.move = move def process_tag(self): # retrieve stuff depth = self.depth xy = self.xy id = self.idToPlace # build PlaceObject2 bb = bytes() if self.move: bb += "\x07".encode("ascii") else: # (8 bit flags): 4:matrix, 2:character, 1:move bb += "\x06".encode("ascii") bb += int2uint16(depth) # Depth bb += int2uint16(id) # character id bb += self.make_matrix_record(trans_xy=xy).tobytes() # MATRIX record self.bytes = bb class ShapeTag(DefinitionTag): def __init__(self, bitmapId, xy, wh): DefinitionTag.__init__(self) self.tagtype = 2 self.bitmapId = bitmapId self.xy = xy self.wh = wh def process_tag(self): """Returns a defineshape tag. with a bitmap fill""" bb = bytes() bb += int2uint16(self.id) xy, wh = self.xy, self.wh tmp = self.make_rect_record(xy[0], wh[0], xy[1], wh[1]) # ShapeBounds bb += tmp.tobytes() # make SHAPEWITHSTYLE structure # first entry: FILLSTYLEARRAY with in it a single fill style bb += int2uint8(1) # FillStyleCount bb += "\x41".encode("ascii") # FillStyleType (0x41 or 0x43 unsmoothed) bb += int2uint16(self.bitmapId) # BitmapId # bb += '\x00' # BitmapMatrix (empty matrix with leftover bits filled) bb += self.make_matrix_record(scale_xy=(20, 20)).tobytes() # # first entry: FILLSTYLEARRAY with in it a single fill style # bb += int2uint8(1) # FillStyleCount # bb += '\x00' # solid fill # bb += '\x00\x00\xff' # color # second entry: LINESTYLEARRAY with a single line style bb += int2uint8(0) # LineStyleCount # bb += int2uint16(0*20) # Width # bb += '\x00\xff\x00' # Color # third and fourth entry: NumFillBits and NumLineBits (4 bits each) # I each give them four bits, so 16 styles possible. bb += "\x44".encode("ascii") self.bytes = bb # last entries: SHAPERECORDs ... (individual shape records not aligned) # STYLECHANGERECORD bits = BitArray() bits += self.make_style_change_record(0, 1, moveTo=(self.wh[0], self.wh[1])) # STRAIGHTEDGERECORD 4x bits += self.make_straight_edge_record(-self.wh[0], 0) bits += self.make_straight_edge_record(0, -self.wh[1]) bits += self.make_straight_edge_record(self.wh[0], 0) bits += self.make_straight_edge_record(0, self.wh[1]) # ENDSHAPRECORD bits += self.make_end_shape_record() self.bytes += bits.tobytes() # done # self.bytes = bb def make_style_change_record(self, lineStyle=None, fillStyle=None, moveTo=None): # first 6 flags # Note that we use FillStyle1. If we don't flash (at least 8) does not # recognize the frames properly when importing to library. bits = BitArray() bits += "0" # TypeFlag (not an edge record) bits += "0" # StateNewStyles (only for DefineShape2 and Defineshape3) if lineStyle: bits += "1" # StateLineStyle else: bits += "0" if fillStyle: bits += "1" # StateFillStyle1 else: bits += "0" bits += "0" # StateFillStyle0 if moveTo: bits += "1" # StateMoveTo else: bits += "0" # give information # todo: nbits for fillStyle and lineStyle is hard coded. if moveTo: bits += twits2bits([moveTo[0], moveTo[1]]) if fillStyle: bits += int2bits(fillStyle, 4) if lineStyle: bits += int2bits(lineStyle, 4) return bits def make_straight_edge_record(self, *dxdy): if len(dxdy) == 1: dxdy = dxdy[0] # determine required number of bits xbits = signedint2bits(dxdy[0] * 20) ybits = signedint2bits(dxdy[1] * 20) nbits = max([len(xbits), len(ybits)]) bits = BitArray() bits += "11" # TypeFlag and StraightFlag bits += int2bits(nbits - 2, 4) bits += "1" # GeneralLineFlag bits += signedint2bits(dxdy[0] * 20, nbits) bits += signedint2bits(dxdy[1] * 20, nbits) # note: I do not make use of vertical/horizontal only lines... return bits def make_end_shape_record(self): bits = BitArray() bits += "0" # TypeFlag: no edge bits += "0" * 5 # EndOfShape return bits def read_pixels(bb, i, tagType, L1): """With pf's seed after the recordheader, reads the pixeldata.""" # Get info charId = bb[i : i + 2] # noqa i += 2 format = ord(bb[i : i + 1]) i += 1 width = bits2int(bb[i : i + 2], 16) i += 2 height = bits2int(bb[i : i + 2], 16) i += 2 # If we can, get pixeldata and make numpy array if format != 5: logger.warning("Can only read 24bit or 32bit RGB(A) lossless images.") else: # Read byte data offset = 2 + 1 + 2 + 2 # all the info bits bb2 = bb[i : i + (L1 - offset)] # Decompress and make numpy array data = zlib.decompress(bb2) a = np.frombuffer(data, dtype=np.uint8) # Set shape if tagType == 20: # DefineBitsLossless - RGB data try: a.shape = height, width, 3 except Exception: # Byte align stuff might cause troubles logger.warning("Cannot read image due to byte alignment") if tagType == 36: # DefineBitsLossless2 - ARGB data a.shape = height, width, 4 # Swap alpha channel to make RGBA b = a a = np.zeros_like(a) a[:, :, 0] = b[:, :, 1] a[:, :, 1] = b[:, :, 2] a[:, :, 2] = b[:, :, 3] a[:, :, 3] = b[:, :, 0] return a # Last few functions # These are the original public functions, we don't use them, but we # keep it so that in principle this module can be used stand-alone. def checkImages(images): # pragma: no cover """checkImages(images) Check numpy images and correct intensity range etc. The same for all movie formats. """ # Init results images2 = [] for im in images: if isinstance(im, np.ndarray): # Check and convert dtype if im.dtype == np.uint8: images2.append(im) # Ok elif im.dtype in [np.float32, np.float64]: theMax = im.max() if 128 < theMax < 300: pass # assume 0:255 else: im = im.copy() im[im < 0] = 0 im[im > 1] = 1 im *= 255 images2.append(im.astype(np.uint8)) else: im = im.astype(np.uint8) images2.append(im) # Check size if im.ndim == 2: pass # ok elif im.ndim == 3: if im.shape[2] not in [3, 4]: raise ValueError("This array can not represent an image.") else: raise ValueError("This array can not represent an image.") else: raise ValueError("Invalid image type: " + str(type(im))) # Done return images2 def build_file( fp, taglist, nframes=1, framesize=(500, 500), fps=10, version=8 ): # pragma: no cover """Give the given file (as bytes) a header.""" # compose header bb = bytes() bb += "F".encode("ascii") # uncompressed bb += "WS".encode("ascii") # signature bytes bb += int2uint8(version) # version bb += "0000".encode("ascii") # FileLength (leave open for now) bb += Tag().make_rect_record(0, framesize[0], 0, framesize[1]).tobytes() bb += int2uint8(0) + int2uint8(fps) # FrameRate bb += int2uint16(nframes) fp.write(bb) # produce all tags for tag in taglist: fp.write(tag.get_tag()) # finish with end tag fp.write("\x00\x00".encode("ascii")) # set size sze = fp.tell() fp.seek(4) fp.write(int2uint32(sze)) def write_swf(filename, images, duration=0.1, repeat=True): # pragma: no cover """Write an swf-file from the specified images. If repeat is False, the movie is finished with a stop action. Duration may also be a list with durations for each frame (note that the duration for each frame is always an integer amount of the minimum duration.) Images should be a list consisting numpy arrays with values between 0 and 255 for integer types, and between 0 and 1 for float types. """ # Check images images2 = checkImages(images) # Init taglist = [FileAttributesTag(), SetBackgroundTag(0, 0, 0)] # Check duration if hasattr(duration, "__len__"): if len(duration) == len(images2): duration = [d for d in duration] else: raise ValueError("len(duration) doesn't match amount of images.") else: duration = [duration for im in images2] # Build delays list minDuration = float(min(duration)) delays = [round(d / minDuration) for d in duration] delays = [max(1, int(d)) for d in delays] # Get FPS fps = 1.0 / minDuration # Produce series of tags for each image # t0 = time.time() nframes = 0 for im in images2: bm = BitmapTag(im) wh = (im.shape[1], im.shape[0]) sh = ShapeTag(bm.id, (0, 0), wh) po = PlaceObjectTag(1, sh.id, move=nframes > 0) taglist.extend([bm, sh, po]) for i in range(delays[nframes]): taglist.append(ShowFrameTag()) nframes += 1 if not repeat: taglist.append(DoActionTag("stop")) # Build file # t1 = time.time() fp = open(filename, "wb") try: build_file(fp, taglist, nframes=nframes, framesize=wh, fps=fps) except Exception: raise finally: fp.close() # t2 = time.time() # logger.warning("Writing SWF took %1.2f and %1.2f seconds" % (t1-t0, t2-t1) ) def read_swf(filename): # pragma: no cover """Read all images from an SWF (shockwave flash) file. Returns a list of numpy arrays. Limitation: only read the PNG encoded images (not the JPG encoded ones). """ # Check whether it exists if not os.path.isfile(filename): raise IOError("File not found: " + str(filename)) # Init images images = [] # Open file and read all fp = open(filename, "rb") bb = fp.read() try: # Check opening tag tmp = bb[0:3].decode("ascii", "ignore") if tmp.upper() == "FWS": pass # ok elif tmp.upper() == "CWS": # Decompress movie bb = bb[:8] + zlib.decompress(bb[8:]) else: raise IOError("Not a valid SWF file: " + str(filename)) # Set filepointer at first tag (skipping framesize RECT and two uin16's i = 8 nbits = bits2int(bb[i : i + 1], 5) # skip FrameSize nbits = 5 + nbits * 4 Lrect = nbits / 8.0 if Lrect % 1: Lrect += 1 Lrect = int(Lrect) i += Lrect + 4 # Iterate over the tags counter = 0 while True: counter += 1 # Get tag header head = bb[i : i + 6] if not head: break # Done (we missed end tag) # Determine type and length T, L1, L2 = get_type_and_len(head) if not L2: logger.warning("Invalid tag length, could not proceed") break # logger.warning(T, L2) # Read image if we can if T in [20, 36]: im = read_pixels(bb, i + 6, T, L1) if im is not None: images.append(im) elif T in [6, 21, 35, 90]: logger.warning("Ignoring JPEG image: cannot read JPEG.") else: pass # Not an image tag # Detect end tag if T == 0: break # Next tag! i += L2 finally: fp.close() # Done return images # Backward compatibility; same public names as when this was images2swf. writeSwf = write_swf readSwf = read_swf