# -*- coding: utf-8 -*- # imageio is distributed under the terms of the (new) BSD License. """ Read/Write images using Pillow/PIL. Backend Library: `Pillow `_ Plugin that wraps the the Pillow library. Pillow is a friendly fork of PIL (Python Image Library) and supports reading and writing of common formats (jpg, png, gif, tiff, ...). For, the complete list of features and supported formats please refer to pillows official docs (see the Backend Library link). Parameters ---------- request : Request A request object representing the resource to be operated on. Methods ------- .. autosummary:: :toctree: _plugins/pillow PillowPlugin.read PillowPlugin.write PillowPlugin.iter PillowPlugin.get_meta """ import sys import warnings from io import BytesIO from typing import Any, Callable, Dict, Iterator, List, Optional, Tuple, Union, cast import numpy as np from PIL import ExifTags, GifImagePlugin, Image, ImageSequence, UnidentifiedImageError from PIL import __version__ as pil_version # type: ignore from ..core.request import URI_BYTES, InitializationError, IOMode, Request from ..core.v3_plugin_api import ImageProperties, PluginV3 from ..typing import ArrayLike def pillow_version() -> Tuple[int]: return tuple(int(x) for x in pil_version.split(".")) def _exif_orientation_transform(orientation: int, mode: str) -> Callable: # get transformation that transforms an image from a # given EXIF orientation into the standard orientation # -1 if the mode has color channel, 0 otherwise axis = -2 if Image.getmodebands(mode) > 1 else -1 EXIF_ORIENTATION = { 1: lambda x: x, 2: lambda x: np.flip(x, axis=axis), 3: lambda x: np.rot90(x, k=2), 4: lambda x: np.flip(x, axis=axis - 1), 5: lambda x: np.flip(np.rot90(x, k=3), axis=axis), 6: lambda x: np.rot90(x, k=3), 7: lambda x: np.flip(np.rot90(x, k=1), axis=axis), 8: lambda x: np.rot90(x, k=1), } return EXIF_ORIENTATION[orientation] class PillowPlugin(PluginV3): def __init__(self, request: Request) -> None: """Instantiate a new Pillow Plugin Object Parameters ---------- request : {Request} A request object representing the resource to be operated on. """ super().__init__(request) # Register HEIF opener for Pillow try: from pillow_heif import register_heif_opener except ImportError: pass else: register_heif_opener() # Register AVIF opener for Pillow try: from pillow_heif import register_avif_opener except ImportError: pass else: register_avif_opener() self._image: Image = None self.images_to_write = [] if request.mode.io_mode == IOMode.read: try: with Image.open(request.get_file()): # Check if it is generally possible to read the image. # This will not read any data and merely try to find a # compatible pillow plugin (ref: the pillow docs). pass except UnidentifiedImageError: if request._uri_type == URI_BYTES: raise InitializationError( "Pillow can not read the provided bytes." ) from None else: raise InitializationError( f"Pillow can not read {request.raw_uri}." ) from None self._image = Image.open(self._request.get_file()) else: self.save_args = {} extension = self.request.extension or self.request.format_hint if extension is None: warnings.warn( "Can't determine file format to write as. You _must_" " set `format` during write or the call will fail. Use " "`extension` to supress this warning. ", UserWarning, ) return tirage = [Image.preinit, Image.init] for format_loader in tirage: format_loader() if extension in Image.registered_extensions().keys(): return raise InitializationError( f"Pillow can not write `{extension}` files." ) from None def close(self) -> None: self._flush_writer() if self._image: self._image.close() self._request.finish() def read( self, *, index: int = None, mode: str = None, rotate: bool = False, apply_gamma: bool = False, writeable_output: bool = True, pilmode: str = None, exifrotate: bool = None, as_gray: bool = None, ) -> np.ndarray: """ Parses the given URI and creates a ndarray from it. Parameters ---------- index : int If the ImageResource contains multiple ndimages, and index is an integer, select the index-th ndimage from among them and return it. If index is an ellipsis (...), read all ndimages in the file and stack them along a new batch dimension and return them. If index is None, this plugin reads the first image of the file (index=0) unless the image is a GIF or APNG, in which case all images are read (index=...). mode : str Convert the image to the given mode before returning it. If None, the mode will be left unchanged. Possible modes can be found at: https://pillow.readthedocs.io/en/stable/handbook/concepts.html#modes rotate : bool If True and the image contains an EXIF orientation tag, apply the orientation before returning the ndimage. apply_gamma : bool If True and the image contains metadata about gamma, apply gamma correction to the image. writable_output : bool If True, ensure that the image is writable before returning it to the user. This incurs a full copy of the pixel data if the data served by pillow is read-only. Consequentially, setting this flag to False improves performance for some images. pilmode : str Deprecated, use `mode` instead. exifrotate : bool Deprecated, use `rotate` instead. as_gray : bool Deprecated. Exists to raise a constructive error message. Returns ------- ndimage : ndarray A numpy array containing the loaded image data Notes ----- If you read a paletted image (e.g. GIF) then the plugin will apply the palette by default. Should you wish to read the palette indices of each pixel use ``mode="P"``. The coresponding color pallete can be found in the image's metadata using the ``palette`` key when metadata is extracted using the ``exclude_applied=False`` kwarg. The latter is needed, as palettes are applied by default and hence excluded by default to keep metadata and pixel data consistent. """ if pilmode is not None: warnings.warn( "`pilmode` is deprecated. Use `mode` instead.", DeprecationWarning ) mode = pilmode if exifrotate is not None: warnings.warn( "`exifrotate` is deprecated. Use `rotate` instead.", DeprecationWarning ) rotate = exifrotate if as_gray is not None: raise TypeError( "The keyword `as_gray` is no longer supported." "Use `mode='F'` for a backward-compatible result, or " " `mode='L'` for an integer-valued result." ) if self._image.format == "GIF": # Converting GIF P frames to RGB # https://github.com/python-pillow/Pillow/pull/6150 GifImagePlugin.LOADING_STRATEGY = ( GifImagePlugin.LoadingStrategy.RGB_AFTER_DIFFERENT_PALETTE_ONLY ) if index is None: if self._image.format == "GIF": index = Ellipsis elif self._image.custom_mimetype == "image/apng": index = Ellipsis else: index = 0 if isinstance(index, int): # will raise IO error if index >= number of frames in image self._image.seek(index) image = self._apply_transforms( self._image, mode, rotate, apply_gamma, writeable_output ) else: iterator = self.iter( mode=mode, rotate=rotate, apply_gamma=apply_gamma, writeable_output=writeable_output, ) image = np.stack([im for im in iterator], axis=0) return image def iter( self, *, mode: str = None, rotate: bool = False, apply_gamma: bool = False, writeable_output: bool = True, ) -> Iterator[np.ndarray]: """ Iterate over all ndimages/frames in the URI Parameters ---------- mode : {str, None} Convert the image to the given mode before returning it. If None, the mode will be left unchanged. Possible modes can be found at: https://pillow.readthedocs.io/en/stable/handbook/concepts.html#modes rotate : {bool} If set to ``True`` and the image contains an EXIF orientation tag, apply the orientation before returning the ndimage. apply_gamma : {bool} If ``True`` and the image contains metadata about gamma, apply gamma correction to the image. writable_output : bool If True, ensure that the image is writable before returning it to the user. This incurs a full copy of the pixel data if the data served by pillow is read-only. Consequentially, setting this flag to False improves performance for some images. """ for im in ImageSequence.Iterator(self._image): yield self._apply_transforms( im, mode, rotate, apply_gamma, writeable_output ) def _apply_transforms( self, image, mode, rotate, apply_gamma, writeable_output ) -> np.ndarray: if mode is not None: image = image.convert(mode) elif image.mode == "P": # adjust for pillow9 changes # see: https://github.com/python-pillow/Pillow/issues/5929 image = image.convert(image.palette.mode) elif image.format == "PNG" and image.mode == "I": major, minor, patch = pillow_version() if sys.byteorder == "little": desired_mode = "I;16" else: # pragma: no cover # can't test big-endian in GH-Actions desired_mode = "I;16B" if major < 10: # pragma: no cover warnings.warn( "Loading 16-bit (uint16) PNG as int32 due to limitations " "in pillow's PNG decoder. This will be fixed in a future " "version of pillow which will make this warning dissapear.", UserWarning, ) elif minor < 1: # pragma: no cover # pillow<10.1.0 can directly decode into 16-bit grayscale image.mode = desired_mode else: # pillow >= 10.1.0 image = image.convert(desired_mode) image = np.asarray(image) meta = self.metadata(index=self._image.tell(), exclude_applied=False) if rotate and "Orientation" in meta: transformation = _exif_orientation_transform( meta["Orientation"], self._image.mode ) image = transformation(image) if apply_gamma and "gamma" in meta: gamma = float(meta["gamma"]) scale = float(65536 if image.dtype == np.uint16 else 255) gain = 1.0 image = ((image / scale) ** gamma) * scale * gain + 0.4999 image = np.round(image).astype(np.uint8) if writeable_output and not image.flags["WRITEABLE"]: image = np.array(image) return image def write( self, ndimage: Union[ArrayLike, List[ArrayLike]], *, mode: str = None, format: str = None, is_batch: bool = None, **kwargs, ) -> Optional[bytes]: """ Write an ndimage to the URI specified in path. If the URI points to a file on the current host and the file does not yet exist it will be created. If the file exists already, it will be appended if possible; otherwise, it will be replaced. If necessary, the image is broken down along the leading dimension to fit into individual frames of the chosen format. If the format doesn't support multiple frames, and IOError is raised. Parameters ---------- image : ndarray or list The ndimage to write. If a list is given each element is expected to be an ndimage. mode : str Specify the image's color format. If None (default), the mode is inferred from the array's shape and dtype. Possible modes can be found at: https://pillow.readthedocs.io/en/stable/handbook/concepts.html#modes format : str Optional format override. If omitted, the format to use is determined from the filename extension. If a file object was used instead of a filename, this parameter must always be used. is_batch : bool Explicitly tell the writer that ``image`` is a batch of images (True) or not (False). If None, the writer will guess this from the provided ``mode`` or ``image.shape``. While the latter often works, it may cause problems for small images due to aliasing of spatial and color-channel axes. kwargs : ... Extra arguments to pass to pillow. If a writer doesn't recognise an option, it is silently ignored. The available options are described in pillow's `image format documentation `_ for each writer. Notes ----- When writing batches of very narrow (2-4 pixels wide) gray images set the ``mode`` explicitly to avoid the batch being identified as a colored image. """ if "fps" in kwargs: warnings.warn( "The keyword `fps` is no longer supported. Use `duration`" "(in ms) instead, e.g. `fps=50` == `duration=20` (1000 * 1/50).", DeprecationWarning, ) kwargs["duration"] = 1000 * 1 / kwargs.get("fps") if isinstance(ndimage, list): ndimage = np.stack(ndimage, axis=0) is_batch = True else: ndimage = np.asarray(ndimage) # check if ndimage is a batch of frames/pages (e.g. for writing GIF) # if mode is given, use it; otherwise fall back to image.ndim only if is_batch is not None: pass elif mode is not None: is_batch = ( ndimage.ndim > 3 if Image.getmodebands(mode) > 1 else ndimage.ndim > 2 ) elif ndimage.ndim == 2: is_batch = False elif ndimage.ndim == 3 and ndimage.shape[-1] == 1: raise ValueError("Can't write images with one color channel.") elif ndimage.ndim == 3 and ndimage.shape[-1] in [2, 3, 4]: # Note: this makes a channel-last assumption is_batch = False else: is_batch = True if not is_batch: ndimage = ndimage[None, ...] for frame in ndimage: pil_frame = Image.fromarray(frame, mode=mode) if "bits" in kwargs: pil_frame = pil_frame.quantize(colors=2 ** kwargs["bits"]) self.images_to_write.append(pil_frame) if ( format is not None and "format" in self.save_args and self.save_args["format"] != format ): old_format = self.save_args["format"] warnings.warn( "Changing the output format during incremental" " writes is strongly discouraged." f" Was `{old_format}`, is now `{format}`.", UserWarning, ) extension = self.request.extension or self.request.format_hint self.save_args["format"] = format or Image.registered_extensions()[extension] self.save_args.update(kwargs) # when writing to `bytes` we flush instantly result = None if self._request._uri_type == URI_BYTES: self._flush_writer() file = cast(BytesIO, self._request.get_file()) result = file.getvalue() return result def _flush_writer(self): if len(self.images_to_write) == 0: return primary_image = self.images_to_write.pop(0) if len(self.images_to_write) > 0: self.save_args["save_all"] = True self.save_args["append_images"] = self.images_to_write primary_image.save(self._request.get_file(), **self.save_args) self.images_to_write.clear() self.save_args.clear() def get_meta(self, *, index=0) -> Dict[str, Any]: return self.metadata(index=index, exclude_applied=False) def metadata( self, index: int = None, exclude_applied: bool = True ) -> Dict[str, Any]: """Read ndimage metadata. Parameters ---------- index : {integer, None} If the ImageResource contains multiple ndimages, and index is an integer, select the index-th ndimage from among them and return its metadata. If index is an ellipsis (...), read and return global metadata. If index is None, this plugin reads metadata from the first image of the file (index=0) unless the image is a GIF or APNG, in which case global metadata is read (index=...). exclude_applied : bool If True, exclude metadata fields that are applied to the image while reading. For example, if the binary data contains a rotation flag, the image is rotated by default and the rotation flag is excluded from the metadata to avoid confusion. Returns ------- metadata : dict A dictionary of format-specific metadata. """ if index is None: if self._image.format == "GIF": index = Ellipsis elif self._image.custom_mimetype == "image/apng": index = Ellipsis else: index = 0 if isinstance(index, int) and self._image.tell() != index: self._image.seek(index) metadata = self._image.info.copy() metadata["mode"] = self._image.mode metadata["shape"] = self._image.size if self._image.mode == "P" and not exclude_applied: metadata["palette"] = np.asarray(tuple(self._image.palette.colors.keys())) if self._image.getexif(): exif_data = { ExifTags.TAGS.get(key, "unknown"): value for key, value in dict(self._image.getexif()).items() } exif_data.pop("unknown", None) metadata.update(exif_data) if exclude_applied: metadata.pop("Orientation", None) return metadata def properties(self, index: int = None) -> ImageProperties: """Standardized ndimage metadata Parameters ---------- index : int If the ImageResource contains multiple ndimages, and index is an integer, select the index-th ndimage from among them and return its properties. If index is an ellipsis (...), read and return the properties of all ndimages in the file stacked along a new batch dimension. If index is None, this plugin reads and returns the properties of the first image (index=0) unless the image is a GIF or APNG, in which case it reads and returns the properties all images (index=...). Returns ------- properties : ImageProperties A dataclass filled with standardized image metadata. Notes ----- This does not decode pixel data and is fast for large images. """ if index is None: if self._image.format == "GIF": index = Ellipsis elif self._image.custom_mimetype == "image/apng": index = Ellipsis else: index = 0 if index is Ellipsis: self._image.seek(0) else: self._image.seek(index) if self._image.mode == "P": # mode of palette images is determined by their palette mode = self._image.palette.mode else: mode = self._image.mode width: int = self._image.width height: int = self._image.height shape: Tuple[int, ...] = (height, width) n_frames: Optional[int] = None if index is ...: n_frames = getattr(self._image, "n_frames", 1) shape = (n_frames, *shape) dummy = np.asarray(Image.new(mode, (1, 1))) pil_shape: Tuple[int, ...] = dummy.shape if len(pil_shape) > 2: shape = (*shape, *pil_shape[2:]) return ImageProperties( shape=shape, dtype=dummy.dtype, n_images=n_frames, is_batch=index is Ellipsis, )