# Natural Language Toolkit: Tokenizers # # Copyright (C) 2001-2023 NLTK Project # Author: Edward Loper # Steven Bird (minor additions) # Contributors: matthewmc, clouds56 # URL: # For license information, see LICENSE.TXT r""" NLTK Tokenizer Package Tokenizers divide strings into lists of substrings. For example, tokenizers can be used to find the words and punctuation in a string: >>> from nltk.tokenize import word_tokenize >>> s = '''Good muffins cost $3.88\nin New York. Please buy me ... two of them.\n\nThanks.''' >>> word_tokenize(s) # doctest: +NORMALIZE_WHITESPACE ['Good', 'muffins', 'cost', '$', '3.88', 'in', 'New', 'York', '.', 'Please', 'buy', 'me', 'two', 'of', 'them', '.', 'Thanks', '.'] This particular tokenizer requires the Punkt sentence tokenization models to be installed. NLTK also provides a simpler, regular-expression based tokenizer, which splits text on whitespace and punctuation: >>> from nltk.tokenize import wordpunct_tokenize >>> wordpunct_tokenize(s) # doctest: +NORMALIZE_WHITESPACE ['Good', 'muffins', 'cost', '$', '3', '.', '88', 'in', 'New', 'York', '.', 'Please', 'buy', 'me', 'two', 'of', 'them', '.', 'Thanks', '.'] We can also operate at the level of sentences, using the sentence tokenizer directly as follows: >>> from nltk.tokenize import sent_tokenize, word_tokenize >>> sent_tokenize(s) ['Good muffins cost $3.88\nin New York.', 'Please buy me\ntwo of them.', 'Thanks.'] >>> [word_tokenize(t) for t in sent_tokenize(s)] # doctest: +NORMALIZE_WHITESPACE [['Good', 'muffins', 'cost', '$', '3.88', 'in', 'New', 'York', '.'], ['Please', 'buy', 'me', 'two', 'of', 'them', '.'], ['Thanks', '.']] Caution: when tokenizing a Unicode string, make sure you are not using an encoded version of the string (it may be necessary to decode it first, e.g. with ``s.decode("utf8")``. NLTK tokenizers can produce token-spans, represented as tuples of integers having the same semantics as string slices, to support efficient comparison of tokenizers. (These methods are implemented as generators.) >>> from nltk.tokenize import WhitespaceTokenizer >>> list(WhitespaceTokenizer().span_tokenize(s)) # doctest: +NORMALIZE_WHITESPACE [(0, 4), (5, 12), (13, 17), (18, 23), (24, 26), (27, 30), (31, 36), (38, 44), (45, 48), (49, 51), (52, 55), (56, 58), (59, 64), (66, 73)] There are numerous ways to tokenize text. If you need more control over tokenization, see the other methods provided in this package. For further information, please see Chapter 3 of the NLTK book. """ import re from nltk.data import load from nltk.tokenize.casual import TweetTokenizer, casual_tokenize from nltk.tokenize.destructive import NLTKWordTokenizer from nltk.tokenize.legality_principle import LegalitySyllableTokenizer from nltk.tokenize.mwe import MWETokenizer from nltk.tokenize.punkt import PunktSentenceTokenizer from nltk.tokenize.regexp import ( BlanklineTokenizer, RegexpTokenizer, WhitespaceTokenizer, WordPunctTokenizer, blankline_tokenize, regexp_tokenize, wordpunct_tokenize, ) from nltk.tokenize.repp import ReppTokenizer from nltk.tokenize.sexpr import SExprTokenizer, sexpr_tokenize from nltk.tokenize.simple import ( LineTokenizer, SpaceTokenizer, TabTokenizer, line_tokenize, ) from nltk.tokenize.sonority_sequencing import SyllableTokenizer from nltk.tokenize.stanford_segmenter import StanfordSegmenter from nltk.tokenize.texttiling import TextTilingTokenizer from nltk.tokenize.toktok import ToktokTokenizer from nltk.tokenize.treebank import TreebankWordDetokenizer, TreebankWordTokenizer from nltk.tokenize.util import regexp_span_tokenize, string_span_tokenize # Standard sentence tokenizer. def sent_tokenize(text, language="english"): """ Return a sentence-tokenized copy of *text*, using NLTK's recommended sentence tokenizer (currently :class:`.PunktSentenceTokenizer` for the specified language). :param text: text to split into sentences :param language: the model name in the Punkt corpus """ tokenizer = load(f"tokenizers/punkt/{language}.pickle") return tokenizer.tokenize(text) # Standard word tokenizer. _treebank_word_tokenizer = NLTKWordTokenizer() def word_tokenize(text, language="english", preserve_line=False): """ Return a tokenized copy of *text*, using NLTK's recommended word tokenizer (currently an improved :class:`.TreebankWordTokenizer` along with :class:`.PunktSentenceTokenizer` for the specified language). :param text: text to split into words :type text: str :param language: the model name in the Punkt corpus :type language: str :param preserve_line: A flag to decide whether to sentence tokenize the text or not. :type preserve_line: bool """ sentences = [text] if preserve_line else sent_tokenize(text, language) return [ token for sent in sentences for token in _treebank_word_tokenizer.tokenize(sent) ]