# Natural Language Toolkit: NLTK's very own tokenizer. # # Copyright (C) 2001-2023 NLTK Project # Author: Liling Tan # Tom Aarsen <> (modifications) # URL: # For license information, see LICENSE.TXT import re import warnings from typing import Iterator, List, Tuple from nltk.tokenize.api import TokenizerI from nltk.tokenize.util import align_tokens class MacIntyreContractions: """ List of contractions adapted from Robert MacIntyre's tokenizer. """ CONTRACTIONS2 = [ r"(?i)\b(can)(?#X)(not)\b", r"(?i)\b(d)(?#X)('ye)\b", r"(?i)\b(gim)(?#X)(me)\b", r"(?i)\b(gon)(?#X)(na)\b", r"(?i)\b(got)(?#X)(ta)\b", r"(?i)\b(lem)(?#X)(me)\b", r"(?i)\b(more)(?#X)('n)\b", r"(?i)\b(wan)(?#X)(na)(?=\s)", ] CONTRACTIONS3 = [r"(?i) ('t)(?#X)(is)\b", r"(?i) ('t)(?#X)(was)\b"] CONTRACTIONS4 = [r"(?i)\b(whad)(dd)(ya)\b", r"(?i)\b(wha)(t)(cha)\b"] class NLTKWordTokenizer(TokenizerI): """ The NLTK tokenizer that has improved upon the TreebankWordTokenizer. This is the method that is invoked by ``word_tokenize()``. It assumes that the text has already been segmented into sentences, e.g. using ``sent_tokenize()``. The tokenizer is "destructive" such that the regexes applied will munge the input string to a state beyond re-construction. It is possible to apply `TreebankWordDetokenizer.detokenize` to the tokenized outputs of `NLTKDestructiveWordTokenizer.tokenize` but there's no guarantees to revert to the original string. """ # Starting quotes. STARTING_QUOTES = [ (re.compile("([«“‘„]|[`]+)", re.U), r" \1 "), (re.compile(r"^\""), r"``"), (re.compile(r"(``)"), r" \1 "), (re.compile(r"([ \(\[{<])(\"|\'{2})"), r"\1 `` "), (re.compile(r"(?i)(\')(?!re|ve|ll|m|t|s|d|n)(\w)\b", re.U), r"\1 \2"), ] # Ending quotes. ENDING_QUOTES = [ (re.compile("([»”’])", re.U), r" \1 "), (re.compile(r"''"), " '' "), (re.compile(r'"'), " '' "), (re.compile(r"([^' ])('[sS]|'[mM]|'[dD]|') "), r"\1 \2 "), (re.compile(r"([^' ])('ll|'LL|'re|'RE|'ve|'VE|n't|N'T) "), r"\1 \2 "), ] # For improvements for starting/closing quotes from TreebankWordTokenizer, # see discussion on https://github.com/nltk/nltk/pull/1437 # Adding to TreebankWordTokenizer, nltk.word_tokenize now splits on # - chervon quotes u'\xab' and u'\xbb' . # - unicode quotes u'\u2018', u'\u2019', u'\u201c' and u'\u201d' # See https://github.com/nltk/nltk/issues/1995#issuecomment-376741608 # Also, behavior of splitting on clitics now follows Stanford CoreNLP # - clitics covered (?!re|ve|ll|m|t|s|d)(\w)\b # Punctuation. PUNCTUATION = [ (re.compile(r'([^\.])(\.)([\]\)}>"\'' "»”’ " r"]*)\s*$", re.U), r"\1 \2 \3 "), (re.compile(r"([:,])([^\d])"), r" \1 \2"), (re.compile(r"([:,])$"), r" \1 "), ( re.compile(r"\.{2,}", re.U), r" \g<0> ", ), # See https://github.com/nltk/nltk/pull/2322 (re.compile(r"[;@#$%&]"), r" \g<0> "), ( re.compile(r'([^\.])(\.)([\]\)}>"\']*)\s*$'), r"\1 \2\3 ", ), # Handles the final period. (re.compile(r"[?!]"), r" \g<0> "), (re.compile(r"([^'])' "), r"\1 ' "), ( re.compile(r"[*]", re.U), r" \g<0> ", ), # See https://github.com/nltk/nltk/pull/2322 ] # Pads parentheses PARENS_BRACKETS = (re.compile(r"[\]\[\(\)\{\}\<\>]"), r" \g<0> ") # Optionally: Convert parentheses, brackets and converts them to PTB symbols. CONVERT_PARENTHESES = [ (re.compile(r"\("), "-LRB-"), (re.compile(r"\)"), "-RRB-"), (re.compile(r"\["), "-LSB-"), (re.compile(r"\]"), "-RSB-"), (re.compile(r"\{"), "-LCB-"), (re.compile(r"\}"), "-RCB-"), ] DOUBLE_DASHES = (re.compile(r"--"), r" -- ") # List of contractions adapted from Robert MacIntyre's tokenizer. _contractions = MacIntyreContractions() CONTRACTIONS2 = list(map(re.compile, _contractions.CONTRACTIONS2)) CONTRACTIONS3 = list(map(re.compile, _contractions.CONTRACTIONS3)) def tokenize( self, text: str, convert_parentheses: bool = False, return_str: bool = False ) -> List[str]: r"""Return a tokenized copy of `text`. >>> from nltk.tokenize import NLTKWordTokenizer >>> s = '''Good muffins cost $3.88 (roughly 3,36 euros)\nin New York. Please buy me\ntwo of them.\nThanks.''' >>> NLTKWordTokenizer().tokenize(s) # doctest: +NORMALIZE_WHITESPACE ['Good', 'muffins', 'cost', '$', '3.88', '(', 'roughly', '3,36', 'euros', ')', 'in', 'New', 'York.', 'Please', 'buy', 'me', 'two', 'of', 'them.', 'Thanks', '.'] >>> NLTKWordTokenizer().tokenize(s, convert_parentheses=True) # doctest: +NORMALIZE_WHITESPACE ['Good', 'muffins', 'cost', '$', '3.88', '-LRB-', 'roughly', '3,36', 'euros', '-RRB-', 'in', 'New', 'York.', 'Please', 'buy', 'me', 'two', 'of', 'them.', 'Thanks', '.'] :param text: A string with a sentence or sentences. :type text: str :param convert_parentheses: if True, replace parentheses to PTB symbols, e.g. `(` to `-LRB-`. Defaults to False. :type convert_parentheses: bool, optional :param return_str: If True, return tokens as space-separated string, defaults to False. :type return_str: bool, optional :return: List of tokens from `text`. :rtype: List[str] """ if return_str: warnings.warn( "Parameter 'return_str' has been deprecated and should no " "longer be used.", category=DeprecationWarning, stacklevel=2, ) for regexp, substitution in self.STARTING_QUOTES: text = regexp.sub(substitution, text) for regexp, substitution in self.PUNCTUATION: text = regexp.sub(substitution, text) # Handles parentheses. regexp, substitution = self.PARENS_BRACKETS text = regexp.sub(substitution, text) # Optionally convert parentheses if convert_parentheses: for regexp, substitution in self.CONVERT_PARENTHESES: text = regexp.sub(substitution, text) # Handles double dash. regexp, substitution = self.DOUBLE_DASHES text = regexp.sub(substitution, text) # add extra space to make things easier text = " " + text + " " for regexp, substitution in self.ENDING_QUOTES: text = regexp.sub(substitution, text) for regexp in self.CONTRACTIONS2: text = regexp.sub(r" \1 \2 ", text) for regexp in self.CONTRACTIONS3: text = regexp.sub(r" \1 \2 ", text) # We are not using CONTRACTIONS4 since # they are also commented out in the SED scripts # for regexp in self._contractions.CONTRACTIONS4: # text = regexp.sub(r' \1 \2 \3 ', text) return text.split() def span_tokenize(self, text: str) -> Iterator[Tuple[int, int]]: r""" Returns the spans of the tokens in ``text``. Uses the post-hoc nltk.tokens.align_tokens to return the offset spans. >>> from nltk.tokenize import NLTKWordTokenizer >>> s = '''Good muffins cost $3.88\nin New (York). Please (buy) me\ntwo of them.\n(Thanks).''' >>> expected = [(0, 4), (5, 12), (13, 17), (18, 19), (19, 23), ... (24, 26), (27, 30), (31, 32), (32, 36), (36, 37), (37, 38), ... (40, 46), (47, 48), (48, 51), (51, 52), (53, 55), (56, 59), ... (60, 62), (63, 68), (69, 70), (70, 76), (76, 77), (77, 78)] >>> list(NLTKWordTokenizer().span_tokenize(s)) == expected True >>> expected = ['Good', 'muffins', 'cost', '$', '3.88', 'in', ... 'New', '(', 'York', ')', '.', 'Please', '(', 'buy', ')', ... 'me', 'two', 'of', 'them.', '(', 'Thanks', ')', '.'] >>> [s[start:end] for start, end in NLTKWordTokenizer().span_tokenize(s)] == expected True :param text: A string with a sentence or sentences. :type text: str :yield: Tuple[int, int] """ raw_tokens = self.tokenize(text) # Convert converted quotes back to original double quotes # Do this only if original text contains double quote(s) or double # single-quotes (because '' might be transformed to `` if it is # treated as starting quotes). if ('"' in text) or ("''" in text): # Find double quotes and converted quotes matched = [m.group() for m in re.finditer(r"``|'{2}|\"", text)] # Replace converted quotes back to double quotes tokens = [ matched.pop(0) if tok in ['"', "``", "''"] else tok for tok in raw_tokens ] else: tokens = raw_tokens yield from align_tokens(tokens, text)