#!/usr/bin/env python # Natural Language Toolkit: Interface to the Stanford Segmenter # for Chinese and Arabic # # Copyright (C) 2001-2023 NLTK Project # Author: 52nlp <52nlpcn@gmail.com> # Casper Lehmann-Strøm # Alex Constantin # # URL: # For license information, see LICENSE.TXT import json import os import tempfile import warnings from subprocess import PIPE from nltk.internals import ( _java_options, config_java, find_dir, find_file, find_jar, java, ) from nltk.tokenize.api import TokenizerI _stanford_url = "https://nlp.stanford.edu/software" class StanfordSegmenter(TokenizerI): """Interface to the Stanford Segmenter If stanford-segmenter version is older than 2016-10-31, then path_to_slf4j should be provieded, for example:: seg = StanfordSegmenter(path_to_slf4j='/YOUR_PATH/slf4j-api.jar') >>> from nltk.tokenize.stanford_segmenter import StanfordSegmenter >>> seg = StanfordSegmenter() # doctest: +SKIP >>> seg.default_config('zh') # doctest: +SKIP >>> sent = u'这是斯坦福中文分词器测试' >>> print(seg.segment(sent)) # doctest: +SKIP \u8fd9 \u662f \u65af\u5766\u798f \u4e2d\u6587 \u5206\u8bcd\u5668 \u6d4b\u8bd5 >>> seg.default_config('ar') # doctest: +SKIP >>> sent = u'هذا هو تصنيف ستانفورد العربي للكلمات' >>> print(seg.segment(sent.split())) # doctest: +SKIP \u0647\u0630\u0627 \u0647\u0648 \u062a\u0635\u0646\u064a\u0641 \u0633\u062a\u0627\u0646\u0641\u0648\u0631\u062f \u0627\u0644\u0639\u0631\u0628\u064a \u0644 \u0627\u0644\u0643\u0644\u0645\u0627\u062a """ _JAR = "stanford-segmenter.jar" def __init__( self, path_to_jar=None, path_to_slf4j=None, java_class=None, path_to_model=None, path_to_dict=None, path_to_sihan_corpora_dict=None, sihan_post_processing="false", keep_whitespaces="false", encoding="UTF-8", options=None, verbose=False, java_options="-mx2g", ): # Raise deprecation warning. warnings.simplefilter("always", DeprecationWarning) warnings.warn( str( "\nThe StanfordTokenizer will " "be deprecated in version 3.2.5.\n" "Please use \033[91mnltk.parse.corenlp.CoreNLPTokenizer\033[0m instead.'" ), DeprecationWarning, stacklevel=2, ) warnings.simplefilter("ignore", DeprecationWarning) stanford_segmenter = find_jar( self._JAR, path_to_jar, env_vars=("STANFORD_SEGMENTER",), searchpath=(), url=_stanford_url, verbose=verbose, ) if path_to_slf4j is not None: slf4j = find_jar( "slf4j-api.jar", path_to_slf4j, env_vars=("SLF4J", "STANFORD_SEGMENTER"), searchpath=(), url=_stanford_url, verbose=verbose, ) else: slf4j = None # This is passed to java as the -cp option, the old version of segmenter needs slf4j. # The new version of stanford-segmenter-2016-10-31 doesn't need slf4j self._stanford_jar = os.pathsep.join( _ for _ in [stanford_segmenter, slf4j] if _ is not None ) self._java_class = java_class self._model = path_to_model self._sihan_corpora_dict = path_to_sihan_corpora_dict self._sihan_post_processing = sihan_post_processing self._keep_whitespaces = keep_whitespaces self._dict = path_to_dict self._encoding = encoding self.java_options = java_options options = {} if options is None else options self._options_cmd = ",".join( f"{key}={json.dumps(val)}" for key, val in options.items() ) def default_config(self, lang): """ Attempt to initialize Stanford Word Segmenter for the specified language using the STANFORD_SEGMENTER and STANFORD_MODELS environment variables """ search_path = () if os.environ.get("STANFORD_SEGMENTER"): search_path = {os.path.join(os.environ.get("STANFORD_SEGMENTER"), "data")} # init for Chinese-specific files self._dict = None self._sihan_corpora_dict = None self._sihan_post_processing = "false" if lang == "ar": self._java_class = ( "edu.stanford.nlp.international.arabic.process.ArabicSegmenter" ) model = "arabic-segmenter-atb+bn+arztrain.ser.gz" elif lang == "zh": self._java_class = "edu.stanford.nlp.ie.crf.CRFClassifier" model = "pku.gz" self._sihan_post_processing = "true" path_to_dict = "dict-chris6.ser.gz" try: self._dict = find_file( path_to_dict, searchpath=search_path, url=_stanford_url, verbose=False, env_vars=("STANFORD_MODELS",), ) except LookupError as e: raise LookupError( "Could not find '%s' (tried using env. " "variables STANFORD_MODELS and /data/)" % path_to_dict ) from e sihan_dir = "./data/" try: path_to_sihan_dir = find_dir( sihan_dir, url=_stanford_url, verbose=False, env_vars=("STANFORD_SEGMENTER",), ) self._sihan_corpora_dict = os.path.join(path_to_sihan_dir, sihan_dir) except LookupError as e: raise LookupError( "Could not find '%s' (tried using the " "STANFORD_SEGMENTER environment variable)" % sihan_dir ) from e else: raise LookupError(f"Unsupported language {lang}") try: self._model = find_file( model, searchpath=search_path, url=_stanford_url, verbose=False, env_vars=("STANFORD_MODELS", "STANFORD_SEGMENTER"), ) except LookupError as e: raise LookupError( "Could not find '%s' (tried using env. " "variables STANFORD_MODELS and /data/)" % model ) from e def tokenize(self, s): super().tokenize(s) def segment_file(self, input_file_path): """ """ cmd = [ self._java_class, "-loadClassifier", self._model, "-keepAllWhitespaces", self._keep_whitespaces, "-textFile", input_file_path, ] if self._sihan_corpora_dict is not None: cmd.extend( [ "-serDictionary", self._dict, "-sighanCorporaDict", self._sihan_corpora_dict, "-sighanPostProcessing", self._sihan_post_processing, ] ) stdout = self._execute(cmd) return stdout def segment(self, tokens): return self.segment_sents([tokens]) def segment_sents(self, sentences): """ """ encoding = self._encoding # Create a temporary input file _input_fh, self._input_file_path = tempfile.mkstemp(text=True) # Write the actural sentences to the temporary input file _input_fh = os.fdopen(_input_fh, "wb") _input = "\n".join(" ".join(x) for x in sentences) if isinstance(_input, str) and encoding: _input = _input.encode(encoding) _input_fh.write(_input) _input_fh.close() cmd = [ self._java_class, "-loadClassifier", self._model, "-keepAllWhitespaces", self._keep_whitespaces, "-textFile", self._input_file_path, ] if self._sihan_corpora_dict is not None: cmd.extend( [ "-serDictionary", self._dict, "-sighanCorporaDict", self._sihan_corpora_dict, "-sighanPostProcessing", self._sihan_post_processing, ] ) stdout = self._execute(cmd) # Delete the temporary file os.unlink(self._input_file_path) return stdout def _execute(self, cmd, verbose=False): encoding = self._encoding cmd.extend(["-inputEncoding", encoding]) _options_cmd = self._options_cmd if _options_cmd: cmd.extend(["-options", self._options_cmd]) default_options = " ".join(_java_options) # Configure java. config_java(options=self.java_options, verbose=verbose) stdout, _stderr = java( cmd, classpath=self._stanford_jar, stdout=PIPE, stderr=PIPE ) stdout = stdout.decode(encoding) # Return java configurations to their default values. config_java(options=default_options, verbose=False) return stdout