# Natural Language Toolkit: Text Trees # # Copyright (C) 2001-2023 NLTK Project # Author: Edward Loper # Steven Bird # Peter Ljunglöf # Tom Aarsen <> # URL: # For license information, see LICENSE.TXT from nltk.internals import raise_unorderable_types from nltk.probability import ProbabilisticMixIn from nltk.tree.immutable import ImmutableProbabilisticTree from nltk.tree.tree import Tree ###################################################################### ## Probabilistic trees ###################################################################### class ProbabilisticTree(Tree, ProbabilisticMixIn): def __init__(self, node, children=None, **prob_kwargs): Tree.__init__(self, node, children) ProbabilisticMixIn.__init__(self, **prob_kwargs) # We have to patch up these methods to make them work right: def _frozen_class(self): return ImmutableProbabilisticTree def __repr__(self): return f"{Tree.__repr__(self)} (p={self.prob()!r})" def __str__(self): return f"{self.pformat(margin=60)} (p={self.prob():.6g})" def copy(self, deep=False): if not deep: return type(self)(self._label, self, prob=self.prob()) else: return type(self).convert(self) @classmethod def convert(cls, val): if isinstance(val, Tree): children = [cls.convert(child) for child in val] if isinstance(val, ProbabilisticMixIn): return cls(val._label, children, prob=val.prob()) else: return cls(val._label, children, prob=1.0) else: return val def __eq__(self, other): return self.__class__ is other.__class__ and ( self._label, list(self), self.prob(), ) == (other._label, list(other), other.prob()) def __lt__(self, other): if not isinstance(other, Tree): raise_unorderable_types("<", self, other) if self.__class__ is other.__class__: return (self._label, list(self), self.prob()) < ( other._label, list(other), other.prob(), ) else: return self.__class__.__name__ < other.__class__.__name__ __all__ = ["ProbabilisticTree"]