""" Assorted utilities for use in tests. """ import cmath import contextlib from collections import defaultdict import enum import gc import math import platform import os import signal import shutil import subprocess import sys import tempfile import threading import time import io import ctypes import multiprocessing as mp import warnings import traceback from contextlib import contextmanager import uuid import importlib import types as pytypes from functools import cached_property import numpy as np from numba import testing, types from numba.core import errors, typing, utils, config, cpu from numba.core.typing import cffi_utils from numba.core.compiler import (compile_extra, Flags, DEFAULT_FLAGS, CompilerBase, DefaultPassBuilder) from numba.core.typed_passes import IRLegalization from numba.core.untyped_passes import PreserveIR import unittest from numba.core.runtime import rtsys from numba.np import numpy_support from numba.core.runtime import _nrt_python as _nrt from numba.core.extending import ( overload_method, typeof_impl, register_model, unbox, NativeValue, models, ) from numba.core.datamodel.models import OpaqueModel try: import scipy except ImportError: scipy = None # Make sure that coverage is set up. try: import coverage except ImportError: pass else: coverage.process_startup() enable_pyobj_flags = Flags() enable_pyobj_flags.enable_pyobject = True force_pyobj_flags = Flags() force_pyobj_flags.force_pyobject = True no_pyobj_flags = Flags() nrt_flags = Flags() nrt_flags.nrt = True tag = testing.make_tag_decorator(['important', 'long_running', 'always_test']) # Use to mark a test as a test that must always run when sharded always_test = tag('always_test') _32bit = sys.maxsize <= 2 ** 32 is_parfors_unsupported = _32bit skip_parfors_unsupported = unittest.skipIf( is_parfors_unsupported, 'parfors not supported', ) skip_unless_py10_or_later = unittest.skipUnless( utils.PYVERSION >= (3, 10), "needs Python 3.10 or later" ) skip_unless_py10 = unittest.skipUnless( utils.PYVERSION == (3, 10), "needs Python 3.10" ) skip_if_32bit = unittest.skipIf(_32bit, "Not supported on 32 bit") def expected_failure_py311(fn): if utils.PYVERSION == (3, 11): return unittest.expectedFailure(fn) else: return fn def expected_failure_py312(fn): if utils.PYVERSION == (3, 12): return unittest.expectedFailure(fn) else: return fn _msg = "SciPy needed for test" skip_unless_scipy = unittest.skipIf(scipy is None, _msg) skip_unless_cffi = unittest.skipUnless(cffi_utils.SUPPORTED, 'requires cffi') _lnx_reason = 'linux only test' linux_only = unittest.skipIf(not sys.platform.startswith('linux'), _lnx_reason) _win_reason = 'Windows-only test' windows_only = unittest.skipIf(not sys.platform.startswith('win'), _win_reason) _is_armv7l = platform.machine() == 'armv7l' disabled_test = unittest.skipIf(True, 'Test disabled') # See issue #4563, PPC64LE LLVM bug skip_ppc64le_issue4563 = unittest.skipIf(platform.machine() == 'ppc64le', ("Hits: 'Parameter area must exist " "to pass an argument in memory'")) # Typeguard has_typeguard = bool(os.environ.get('NUMBA_USE_TYPEGUARD', 0)) skip_unless_typeguard = unittest.skipUnless( has_typeguard, "Typeguard is not enabled", ) skip_if_typeguard = unittest.skipIf( has_typeguard, "Broken if Typeguard is enabled", ) # See issue #6465, PPC64LE LLVM bug skip_ppc64le_issue6465 = unittest.skipIf(platform.machine() == 'ppc64le', ("Hits: 'mismatch in size of " "parameter area' in " "LowerCall_64SVR4")) # LLVM PPC issue. # Sample error message: # Invalid PPC CTR loop! # UNREACHABLE executed at /llvm/lib/Target/PowerPC/PPCCTRLoops.cpp:179! skip_ppc64le_invalid_ctr_loop = unittest.skipIf( platform.machine() == 'ppc64le', "Invalid PPC CTR loop") # fenv.h on M1 may have various issues: # https://github.com/numba/numba/issues/7822#issuecomment-1065356758 _uname = platform.uname() IS_OSX_ARM64 = _uname.system == 'Darwin' and _uname.machine == 'arm64' skip_m1_fenv_errors = unittest.skipIf(IS_OSX_ARM64, "fenv.h-like functionality unreliable on OSX arm64") try: import scipy.linalg.cython_lapack has_lapack = True except ImportError: has_lapack = False needs_lapack = unittest.skipUnless(has_lapack, "LAPACK needs SciPy 1.0+") try: import scipy.linalg.cython_blas has_blas = True except ImportError: has_blas = False needs_blas = unittest.skipUnless(has_blas, "BLAS needs SciPy 1.0+") # Decorate a test with @needs_subprocess to ensure it doesn't run unless the # `SUBPROC_TEST` environment variable is set. Use this in conjunction with: # TestCase::subprocess_test_runner which will execute a given test in subprocess # with this environment variable set. _exec_cond = os.environ.get('SUBPROC_TEST', None) == '1' needs_subprocess = unittest.skipUnless(_exec_cond, "needs subprocess harness") try: import setuptools has_setuptools = True except ImportError: has_setuptools = False # decorator for a test that need setuptools needs_setuptools = unittest.skipUnless(has_setuptools, 'Test needs setuptools') def ignore_internal_warnings(): """Use in testing within a ` warnings.catch_warnings` block to filter out warnings that are unrelated/internally generated by Numba. """ # Filter out warnings from typeguard warnings.filterwarnings('ignore', module="typeguard") # Filter out warnings about TBB interface mismatch warnings.filterwarnings(action='ignore', message=r".*TBB_INTERFACE_VERSION.*", category=errors.NumbaWarning, module=r'numba\.np\.ufunc\.parallel.*') class TestCase(unittest.TestCase): longMessage = True # A random state yielding the same random numbers for any test case. # Use as `self.random.` @cached_property def random(self): return np.random.RandomState(42) def reset_module_warnings(self, module): """ Reset the warnings registry of a module. This can be necessary as the warnings module is buggy in that regard. See http://bugs.python.org/issue4180 """ if isinstance(module, str): module = sys.modules[module] try: del module.__warningregistry__ except AttributeError: pass @contextlib.contextmanager def assertTypingError(self): """ A context manager that asserts the enclosed code block fails compiling in nopython mode. """ _accepted_errors = (errors.LoweringError, errors.TypingError, TypeError, NotImplementedError) with self.assertRaises(_accepted_errors) as cm: yield cm @contextlib.contextmanager def assertRefCount(self, *objects): """ A context manager that asserts the given objects have the same reference counts before and after executing the enclosed block. """ old_refcounts = [sys.getrefcount(x) for x in objects] yield gc.collect() new_refcounts = [sys.getrefcount(x) for x in objects] for old, new, obj in zip(old_refcounts, new_refcounts, objects): if old != new: self.fail("Refcount changed from %d to %d for object: %r" % (old, new, obj)) def assertRefCountEqual(self, *objects): gc.collect() rc = [sys.getrefcount(x) for x in objects] rc_0 = rc[0] for i in range(len(objects))[1:]: rc_i = rc[i] if rc_0 != rc_i: self.fail(f"Refcount for objects does not match. " f"#0({rc_0}) != #{i}({rc_i}) does not match.") @contextlib.contextmanager def assertNoNRTLeak(self): """ A context manager that asserts no NRT leak was created during the execution of the enclosed block. """ old = rtsys.get_allocation_stats() yield new = rtsys.get_allocation_stats() total_alloc = new.alloc - old.alloc total_free = new.free - old.free total_mi_alloc = new.mi_alloc - old.mi_alloc total_mi_free = new.mi_free - old.mi_free self.assertEqual(total_alloc, total_free, "number of data allocs != number of data frees") self.assertEqual(total_mi_alloc, total_mi_free, "number of meminfo allocs != number of meminfo frees") _bool_types = (bool, np.bool_) _exact_typesets = [_bool_types, (int,), (str,), (np.integer,), (bytes, np.bytes_)] _approx_typesets = [(float,), (complex,), (np.inexact)] _sequence_typesets = [(tuple, list)] _float_types = (float, np.floating) _complex_types = (complex, np.complexfloating) def _detect_family(self, numeric_object): """ This function returns a string description of the type family that the object in question belongs to. Possible return values are: "exact", "complex", "approximate", "sequence", and "unknown" """ if isinstance(numeric_object, np.ndarray): return "ndarray" if isinstance(numeric_object, enum.Enum): return "enum" for tp in self._sequence_typesets: if isinstance(numeric_object, tp): return "sequence" for tp in self._exact_typesets: if isinstance(numeric_object, tp): return "exact" for tp in self._complex_types: if isinstance(numeric_object, tp): return "complex" for tp in self._approx_typesets: if isinstance(numeric_object, tp): return "approximate" return "unknown" def _fix_dtype(self, dtype): """ Fix the given *dtype* for comparison. """ # Under 64-bit Windows, Numpy may return either int32 or int64 # arrays depending on the function. if (sys.platform == 'win32' and sys.maxsize > 2**32 and dtype == np.dtype('int32')): return np.dtype('int64') else: return dtype def _fix_strides(self, arr): """ Return the strides of the given array, fixed for comparison. Strides for 0- or 1-sized dimensions are ignored. """ if arr.size == 0: return [0] * arr.ndim else: return [stride / arr.itemsize for (stride, shape) in zip(arr.strides, arr.shape) if shape > 1] def assertStridesEqual(self, first, second): """ Test that two arrays have the same shape and strides. """ self.assertEqual(first.shape, second.shape, "shapes differ") self.assertEqual(first.itemsize, second.itemsize, "itemsizes differ") self.assertEqual(self._fix_strides(first), self._fix_strides(second), "strides differ") def assertPreciseEqual(self, first, second, prec='exact', ulps=1, msg=None, ignore_sign_on_zero=False, abs_tol=None ): """ Versatile equality testing function with more built-in checks than standard assertEqual(). For arrays, test that layout, dtype, shape are identical, and recursively call assertPreciseEqual() on the contents. For other sequences, recursively call assertPreciseEqual() on the contents. For scalars, test that two scalars or have similar types and are equal up to a computed precision. If the scalars are instances of exact types or if *prec* is 'exact', they are compared exactly. If the scalars are instances of inexact types (float, complex) and *prec* is not 'exact', then the number of significant bits is computed according to the value of *prec*: 53 bits if *prec* is 'double', 24 bits if *prec* is single. This number of bits can be lowered by raising the *ulps* value. ignore_sign_on_zero can be set to True if zeros are to be considered equal regardless of their sign bit. abs_tol if this is set to a float value its value is used in the following. If, however, this is set to the string "eps" then machine precision of the type(first) is used in the following instead. This kwarg is used to check if the absolute difference in value between first and second is less than the value set, if so the numbers being compared are considered equal. (This is to handle small numbers typically of magnitude less than machine precision). Any value of *prec* other than 'exact', 'single' or 'double' will raise an error. """ try: self._assertPreciseEqual(first, second, prec, ulps, msg, ignore_sign_on_zero, abs_tol) except AssertionError as exc: failure_msg = str(exc) # Fall off of the 'except' scope to avoid Python 3 exception # chaining. else: return # Decorate the failure message with more information self.fail("when comparing %s and %s: %s" % (first, second, failure_msg)) def _assertPreciseEqual(self, first, second, prec='exact', ulps=1, msg=None, ignore_sign_on_zero=False, abs_tol=None): """Recursive workhorse for assertPreciseEqual().""" def _assertNumberEqual(first, second, delta=None): if (delta is None or first == second == 0.0 or math.isinf(first) or math.isinf(second)): self.assertEqual(first, second, msg=msg) # For signed zeros if not ignore_sign_on_zero: try: if math.copysign(1, first) != math.copysign(1, second): self.fail( self._formatMessage(msg, "%s != %s" % (first, second))) except TypeError: pass else: self.assertAlmostEqual(first, second, delta=delta, msg=msg) first_family = self._detect_family(first) second_family = self._detect_family(second) assertion_message = "Type Family mismatch. (%s != %s)" % (first_family, second_family) if msg: assertion_message += ': %s' % (msg,) self.assertEqual(first_family, second_family, msg=assertion_message) # We now know they are in the same comparison family compare_family = first_family # For recognized sequences, recurse if compare_family == "ndarray": dtype = self._fix_dtype(first.dtype) self.assertEqual(dtype, self._fix_dtype(second.dtype)) self.assertEqual(first.ndim, second.ndim, "different number of dimensions") self.assertEqual(first.shape, second.shape, "different shapes") self.assertEqual(first.flags.writeable, second.flags.writeable, "different mutability") # itemsize is already checked by the dtype test above self.assertEqual(self._fix_strides(first), self._fix_strides(second), "different strides") if first.dtype != dtype: first = first.astype(dtype) if second.dtype != dtype: second = second.astype(dtype) for a, b in zip(first.flat, second.flat): self._assertPreciseEqual(a, b, prec, ulps, msg, ignore_sign_on_zero, abs_tol) return elif compare_family == "sequence": self.assertEqual(len(first), len(second), msg=msg) for a, b in zip(first, second): self._assertPreciseEqual(a, b, prec, ulps, msg, ignore_sign_on_zero, abs_tol) return elif compare_family == "exact": exact_comparison = True elif compare_family in ["complex", "approximate"]: exact_comparison = False elif compare_family == "enum": self.assertIs(first.__class__, second.__class__) self._assertPreciseEqual(first.value, second.value, prec, ulps, msg, ignore_sign_on_zero, abs_tol) return elif compare_family == "unknown": # Assume these are non-numeric types: we will fall back # on regular unittest comparison. self.assertIs(first.__class__, second.__class__) exact_comparison = True else: assert 0, "unexpected family" # If a Numpy scalar, check the dtype is exactly the same too # (required for datetime64 and timedelta64). if hasattr(first, 'dtype') and hasattr(second, 'dtype'): self.assertEqual(first.dtype, second.dtype) # Mixing bools and non-bools should always fail if (isinstance(first, self._bool_types) != isinstance(second, self._bool_types)): assertion_message = ("Mismatching return types (%s vs. %s)" % (first.__class__, second.__class__)) if msg: assertion_message += ': %s' % (msg,) self.fail(assertion_message) try: if cmath.isnan(first) and cmath.isnan(second): # The NaNs will compare unequal, skip regular comparison return except TypeError: # Not floats. pass # if absolute comparison is set, use it if abs_tol is not None: if abs_tol == "eps": rtol = np.finfo(type(first)).eps elif isinstance(abs_tol, float): rtol = abs_tol else: raise ValueError("abs_tol is not \"eps\" or a float, found %s" % abs_tol) if abs(first - second) < rtol: return exact_comparison = exact_comparison or prec == 'exact' if not exact_comparison and prec != 'exact': if prec == 'single': bits = 24 elif prec == 'double': bits = 53 else: raise ValueError("unsupported precision %r" % (prec,)) k = 2 ** (ulps - bits - 1) delta = k * (abs(first) + abs(second)) else: delta = None if isinstance(first, self._complex_types): _assertNumberEqual(first.real, second.real, delta) _assertNumberEqual(first.imag, second.imag, delta) elif isinstance(first, (np.timedelta64, np.datetime64)): # Since Np 1.16 NaT == NaT is False, so special comparison needed if np.isnat(first): self.assertEqual(np.isnat(first), np.isnat(second)) else: _assertNumberEqual(first, second, delta) else: _assertNumberEqual(first, second, delta) def subprocess_test_runner(self, test_module, test_class=None, test_name=None, envvars=None, timeout=60, _subproc_test_env="1"): """ Runs named unit test(s) as specified in the arguments as: test_module.test_class.test_name. test_module must always be supplied and if no further refinement is made with test_class and test_name then all tests in the module will be run. The tests will be run in a subprocess with environment variables specified in `envvars`. If given, envvars must be a map of form: environment variable name (str) -> value (str) It is most convenient to use this method in conjunction with @needs_subprocess as the decorator will cause the decorated test to be skipped unless the `SUBPROC_TEST` environment variable is set to the same value of ``_subproc_test_env`` (this special environment variable is set by this method such that the specified test(s) will not be skipped in the subprocess). Following execution in the subprocess this method will check the test(s) executed without error. The timeout kwarg can be used to allow more time for longer running tests, it defaults to 60 seconds. """ themod = self.__module__ thecls = type(self).__name__ parts = (test_module, test_class, test_name) fully_qualified_test = '.'.join(x for x in parts if x is not None) cmd = [sys.executable, '-m', 'numba.runtests', fully_qualified_test] env_copy = os.environ.copy() env_copy['SUBPROC_TEST'] = _subproc_test_env try: env_copy['COVERAGE_PROCESS_START'] = os.environ['COVERAGE_RCFILE'] except KeyError: pass # ignored envvars = pytypes.MappingProxyType({} if envvars is None else envvars) env_copy.update(envvars) status = subprocess.run(cmd, stdout=subprocess.PIPE, stderr=subprocess.PIPE, timeout=timeout, env=env_copy, universal_newlines=True) streams = (f'\ncaptured stdout: {status.stdout}\n' f'captured stderr: {status.stderr}') self.assertEqual(status.returncode, 0, streams) # Python 3.12.1 report no_tests_ran = "NO TESTS RAN" if no_tests_ran in status.stderr: self.skipTest(no_tests_ran) else: self.assertIn('OK', status.stderr) def run_test_in_subprocess(maybefunc=None, timeout=60, envvars=None): """Runs the decorated test in a subprocess via invoking numba's test runner. kwargs timeout and envvars are passed through to subprocess_test_runner.""" def wrapper(func): def inner(self, *args, **kwargs): if os.environ.get("SUBPROC_TEST", None) != func.__name__: # Not in a subprocess test env, so stage the call to run the # test in a subprocess which will set the env var. class_name = self.__class__.__name__ self.subprocess_test_runner( test_module=self.__module__, test_class=class_name, test_name=func.__name__, timeout=timeout, envvars=envvars, _subproc_test_env=func.__name__, ) else: # env var is set, so we're in the subprocess, run the # actual test. func(self) return inner if isinstance(maybefunc, pytypes.FunctionType): return wrapper(maybefunc) else: return wrapper def make_dummy_type(self): """Use to generate a dummy type unique to this test. Returns a python Dummy class and a corresponding Numba type DummyType.""" # Use test_id to make sure no collision is possible. test_id = self.id() DummyType = type('DummyTypeFor{}'.format(test_id), (types.Opaque,), {}) dummy_type = DummyType("my_dummy") register_model(DummyType)(OpaqueModel) class Dummy(object): pass @typeof_impl.register(Dummy) def typeof_dummy(val, c): return dummy_type @unbox(DummyType) def unbox_dummy(typ, obj, c): return NativeValue(c.context.get_dummy_value()) return Dummy, DummyType def skip_if_no_external_compiler(self): """ Call this to ensure the test is skipped if no suitable external compiler is found. This is a method on the TestCase opposed to a stand-alone decorator so as to make it "lazy" via runtime evaluation opposed to running at test-discovery time. """ # This is a local import to avoid deprecation warnings being generated # through the use of the numba.pycc module. from numba.pycc.platform import external_compiler_works if not external_compiler_works(): self.skipTest("No suitable external compiler was found.") class SerialMixin(object): """Mixin to mark test for serial execution. """ _numba_parallel_test_ = False # Various helpers @contextlib.contextmanager def override_config(name, value): """ Return a context manager that temporarily sets Numba config variable *name* to *value*. *name* must be the name of an existing variable in numba.config. """ old_value = getattr(config, name) setattr(config, name, value) try: yield finally: setattr(config, name, old_value) @contextlib.contextmanager def override_env_config(name, value): """ Return a context manager that temporarily sets an Numba config environment *name* to *value*. """ old = os.environ.get(name) os.environ[name] = value config.reload_config() try: yield finally: if old is None: # If it wasn't set originally, delete the environ var del os.environ[name] else: # Otherwise, restore to the old value os.environ[name] = old # Always reload config config.reload_config() def compile_function(name, code, globs): """ Given a *code* string, compile it with globals *globs* and return the function named *name*. """ co = compile(code.rstrip(), "", "single") ns = {} eval(co, globs, ns) return ns[name] _trashcan_dir = 'numba-tests' if os.name == 'nt': # Under Windows, gettempdir() points to the user-local temp dir _trashcan_dir = os.path.join(tempfile.gettempdir(), _trashcan_dir) else: # Mix the UID into the directory name to allow different users to # run the test suite without permission errors (issue #1586) _trashcan_dir = os.path.join(tempfile.gettempdir(), "%s.%s" % (_trashcan_dir, os.getuid())) # Stale temporary directories are deleted after they are older than this value. # The test suite probably won't ever take longer than this... _trashcan_timeout = 24 * 3600 # 1 day def _create_trashcan_dir(): try: os.mkdir(_trashcan_dir) except FileExistsError: pass def _purge_trashcan_dir(): freshness_threshold = time.time() - _trashcan_timeout for fn in sorted(os.listdir(_trashcan_dir)): fn = os.path.join(_trashcan_dir, fn) try: st = os.stat(fn) if st.st_mtime < freshness_threshold: shutil.rmtree(fn, ignore_errors=True) except OSError as e: # In parallel testing, several processes can attempt to # remove the same entry at once, ignore. pass def _create_trashcan_subdir(prefix): _purge_trashcan_dir() path = tempfile.mkdtemp(prefix=prefix + '-', dir=_trashcan_dir) return path def temp_directory(prefix): """ Create a temporary directory with the given *prefix* that will survive at least as long as this process invocation. The temporary directory will be eventually deleted when it becomes stale enough. This is necessary because a DLL file can't be deleted while in use under Windows. An interesting side-effect is to be able to inspect the test files shortly after a test suite run. """ _create_trashcan_dir() return _create_trashcan_subdir(prefix) def import_dynamic(modname): """ Import and return a module of the given name. Care is taken to avoid issues due to Python's internal directory caching. """ import importlib importlib.invalidate_caches() __import__(modname) return sys.modules[modname] # From CPython @contextlib.contextmanager def captured_output(stream_name): """Return a context manager used by captured_stdout/stdin/stderr that temporarily replaces the sys stream *stream_name* with a StringIO.""" orig_stdout = getattr(sys, stream_name) setattr(sys, stream_name, io.StringIO()) try: yield getattr(sys, stream_name) finally: setattr(sys, stream_name, orig_stdout) def captured_stdout(): """Capture the output of sys.stdout: with captured_stdout() as stdout: print("hello") self.assertEqual(stdout.getvalue(), "hello\n") """ return captured_output("stdout") def captured_stderr(): """Capture the output of sys.stderr: with captured_stderr() as stderr: print("hello", file=sys.stderr) self.assertEqual(stderr.getvalue(), "hello\n") """ return captured_output("stderr") @contextlib.contextmanager def capture_cache_log(): with captured_stdout() as out: with override_config('DEBUG_CACHE', True): yield out class EnableNRTStatsMixin(object): """Mixin to enable the NRT statistics counters.""" def setUp(self): _nrt.memsys_enable_stats() def tearDown(self): _nrt.memsys_disable_stats() class MemoryLeak(object): __enable_leak_check = True def memory_leak_setup(self): # Clean up any NRT-backed objects hanging in a dead reference cycle gc.collect() self.__init_stats = rtsys.get_allocation_stats() def memory_leak_teardown(self): if self.__enable_leak_check: self.assert_no_memory_leak() def assert_no_memory_leak(self): old = self.__init_stats new = rtsys.get_allocation_stats() total_alloc = new.alloc - old.alloc total_free = new.free - old.free total_mi_alloc = new.mi_alloc - old.mi_alloc total_mi_free = new.mi_free - old.mi_free self.assertEqual(total_alloc, total_free) self.assertEqual(total_mi_alloc, total_mi_free) def disable_leak_check(self): # For per-test use when MemoryLeakMixin is injected into a TestCase self.__enable_leak_check = False class MemoryLeakMixin(EnableNRTStatsMixin, MemoryLeak): def setUp(self): super(MemoryLeakMixin, self).setUp() self.memory_leak_setup() def tearDown(self): gc.collect() self.memory_leak_teardown() super(MemoryLeakMixin, self).tearDown() @contextlib.contextmanager def forbid_codegen(): """ Forbid LLVM code generation during the execution of the context manager's enclosed block. If code generation is invoked, a RuntimeError is raised. """ from numba.core import codegen patchpoints = ['CPUCodeLibrary._finalize_final_module'] old = {} def fail(*args, **kwargs): raise RuntimeError("codegen forbidden by test case") try: # XXX use the mock library instead? for name in patchpoints: parts = name.split('.') obj = codegen for attrname in parts[:-1]: obj = getattr(obj, attrname) attrname = parts[-1] value = getattr(obj, attrname) assert callable(value), ("%r should be callable" % name) old[obj, attrname] = value setattr(obj, attrname, fail) yield finally: for (obj, attrname), value in old.items(): setattr(obj, attrname, value) # For details about redirection of file-descriptor, read # https://eli.thegreenplace.net/2015/redirecting-all-kinds-of-stdout-in-python/ @contextlib.contextmanager def redirect_fd(fd): """ Temporarily redirect *fd* to a pipe's write end and return a file object wrapping the pipe's read end. """ from numba import _helperlib libnumba = ctypes.CDLL(_helperlib.__file__) libnumba._numba_flush_stdout() save = os.dup(fd) r, w = os.pipe() try: os.dup2(w, fd) yield io.open(r, "r") finally: libnumba._numba_flush_stdout() os.close(w) os.dup2(save, fd) os.close(save) def redirect_c_stdout(): """Redirect C stdout """ fd = sys.__stdout__.fileno() return redirect_fd(fd) def run_in_new_process_caching(func, cache_dir_prefix=__name__, verbose=True): """Spawn a new process to run `func` with a temporary cache directory. The childprocess's stdout and stderr will be captured and redirected to the current process's stdout and stderr. Returns ------- ret : dict exitcode: 0 for success. 1 for exception-raised. stdout: str stderr: str """ cache_dir = temp_directory(cache_dir_prefix) return run_in_new_process_in_cache_dir(func, cache_dir, verbose=verbose) def run_in_new_process_in_cache_dir(func, cache_dir, verbose=True): """Spawn a new process to run `func` with a temporary cache directory. The childprocess's stdout and stderr will be captured and redirected to the current process's stdout and stderr. Similar to ``run_in_new_process_caching()`` but the ``cache_dir`` is a directory path instead of a name prefix for the directory path. Returns ------- ret : dict exitcode: 0 for success. 1 for exception-raised. stdout: str stderr: str """ ctx = mp.get_context('spawn') qout = ctx.Queue() with override_env_config('NUMBA_CACHE_DIR', cache_dir): proc = ctx.Process(target=_remote_runner, args=[func, qout]) proc.start() proc.join() stdout = qout.get_nowait() stderr = qout.get_nowait() if verbose and stdout.strip(): print() print('STDOUT'.center(80, '-')) print(stdout) if verbose and stderr.strip(): print(file=sys.stderr) print('STDERR'.center(80, '-'), file=sys.stderr) print(stderr, file=sys.stderr) return { 'exitcode': proc.exitcode, 'stdout': stdout, 'stderr': stderr, } def _remote_runner(fn, qout): """Used by `run_in_new_process_caching()` """ with captured_stderr() as stderr: with captured_stdout() as stdout: try: fn() except Exception: traceback.print_exc() exitcode = 1 else: exitcode = 0 qout.put(stdout.getvalue()) qout.put(stderr.getvalue()) sys.exit(exitcode) class CheckWarningsMixin(object): @contextlib.contextmanager def check_warnings(self, messages, category=RuntimeWarning): with warnings.catch_warnings(record=True) as catch: warnings.simplefilter("always") yield found = 0 for w in catch: for m in messages: if m in str(w.message): self.assertEqual(w.category, category) found += 1 self.assertEqual(found, len(messages)) def _format_jit_options(**jit_options): if not jit_options: return '' out = [] for key, value in jit_options.items(): if isinstance(value, str): value = '"{}"'.format(value) out.append('{}={}'.format(key, value)) return ', '.join(out) @contextlib.contextmanager def create_temp_module(source_lines, **jit_options): """A context manager that creates and imports a temporary module from sources provided in ``source_lines``. Optionally it is possible to provide jit options for ``jit_module`` if it is explicitly used in ``source_lines`` like ``jit_module({jit_options})``. """ # Use try/finally so cleanup happens even when an exception is raised try: tempdir = temp_directory('test_temp_module') # Generate random module name temp_module_name = 'test_temp_module_{}'.format( str(uuid.uuid4()).replace('-', '_')) temp_module_path = os.path.join(tempdir, temp_module_name + '.py') jit_options = _format_jit_options(**jit_options) with open(temp_module_path, 'w') as f: lines = source_lines.format(jit_options=jit_options) f.write(lines) # Add test_module to sys.path so it can be imported sys.path.insert(0, tempdir) test_module = importlib.import_module(temp_module_name) yield test_module finally: sys.modules.pop(temp_module_name, None) sys.path.remove(tempdir) shutil.rmtree(tempdir) def run_in_subprocess(code, flags=None, env=None, timeout=30): """Run a snippet of Python code in a subprocess with flags, if any are given. 'env' is passed to subprocess.Popen(). 'timeout' is passed to popen.communicate(). Returns the stdout and stderr of the subprocess after its termination. """ if flags is None: flags = [] cmd = [sys.executable,] + flags + ["-c", code] popen = subprocess.Popen(cmd, stdout=subprocess.PIPE, stderr=subprocess.PIPE, env=env) out, err = popen.communicate(timeout=timeout) if popen.returncode != 0: msg = "process failed with code %s: stderr follows\n%s\n" raise AssertionError(msg % (popen.returncode, err.decode())) return out, err def strace(work, syscalls, timeout=10): """Runs strace whilst executing the function work() in the current process, captures the listed syscalls (list of strings). Takes an optional timeout in seconds, default is 10, if this is exceeded the process will be sent a SIGKILL. Returns a list of lines that are output by strace. """ # Open a tmpfile for strace to write into. with tempfile.NamedTemporaryFile('w+t') as ntf: parent_pid = os.getpid() strace_binary = shutil.which('strace') if strace_binary is None: raise ValueError("No valid 'strace' binary could be found") cmd = [strace_binary, # strace '-q', # quietly (no attach/detach print out) '-p', str(parent_pid), # this PID '-e', ','.join(syscalls), # these syscalls '-o', ntf.name] # put output into this file # redirect stdout, stderr is handled by the `-o` flag to strace. popen = subprocess.Popen(cmd, stdout=subprocess.PIPE,) strace_pid = popen.pid thread_timeout = threading.Timer(timeout, popen.kill) thread_timeout.start() def check_return(problem=''): ret = popen.returncode if ret != 0: msg = ("strace exited non-zero, process return code was:" f"{ret}. {problem}") raise RuntimeError(msg) try: # push the communication onto a thread so it doesn't block. # start comms thread thread_comms = threading.Thread(target=popen.communicate) thread_comms.start() # do work work() # Flush the output buffer file ntf.flush() # interrupt the strace process to stop it if it's still running if popen.poll() is None: os.kill(strace_pid, signal.SIGINT) else: # it's not running, probably an issue, raise problem="If this is SIGKILL, increase the timeout?" check_return(problem) # Make sure the return code is 0, SIGINT to detach is considered # a successful exit. popen.wait() check_return() # collect the data strace_data = ntf.readlines() finally: # join communication, should be stopped now as process has # exited thread_comms.join() # should be stopped already thread_timeout.cancel() return strace_data def strace_supported(): """Checks if strace is supported and working""" # Only support this on linux where the `strace` binary is likely to be the # strace needed. if not sys.platform.startswith('linux'): return False def force_clone(): # subprocess triggers a clone subprocess.run([sys.executable, '-c', 'exit()']) syscall = 'clone' try: trace = strace(force_clone, [syscall,]) except Exception: return False return syscall in ''.join(trace) class IRPreservingTestPipeline(CompilerBase): """ Same as the standard pipeline, but preserves the func_ir into the metadata store after legalisation, useful for testing IR changes""" def define_pipelines(self): pipeline = DefaultPassBuilder.define_nopython_pipeline( self.state, "ir_preserving_custom_pipe") # mangle the default pipeline and inject DCE and IR preservation ahead # of legalisation # TODO: add a way to not do this! un-finalizing is not a good idea pipeline._finalized = False pipeline.add_pass_after(PreserveIR, IRLegalization) pipeline.finalize() return [pipeline] def print_azure_matrix(): """This is a utility function that prints out the map of NumPy to Python versions and how many of that combination are being tested across all the declared config for azure-pipelines. It is useful to run when updating the azure-pipelines config to be able to quickly see what the coverage is.""" import yaml from yaml import Loader base_path = os.path.dirname(os.path.abspath(__file__)) azure_pipe = os.path.join(base_path, '..', '..', 'azure-pipelines.yml') if not os.path.isfile(azure_pipe): raise RuntimeError("'azure-pipelines.yml' is not available") with open(os.path.abspath(azure_pipe), 'rt') as f: data = f.read() pipe_yml = yaml.load(data, Loader=Loader) templates = pipe_yml['jobs'] # first look at the items in the first two templates, this is osx/linux py2np_map = defaultdict(lambda: defaultdict(int)) for tmplt in templates[:2]: matrix = tmplt['parameters']['matrix'] for setup in matrix.values(): py2np_map[setup['NUMPY']][setup['PYTHON']]+=1 # next look at the items in the windows only template winpath = ['..', '..', 'buildscripts', 'azure', 'azure-windows.yml'] azure_windows = os.path.join(base_path, *winpath) if not os.path.isfile(azure_windows): raise RuntimeError("'azure-windows.yml' is not available") with open(os.path.abspath(azure_windows), 'rt') as f: data = f.read() windows_yml = yaml.load(data, Loader=Loader) # There's only one template in windows and its keyed differently to the # above, get its matrix. matrix = windows_yml['jobs'][0]['strategy']['matrix'] for setup in matrix.values(): py2np_map[setup['NUMPY']][setup['PYTHON']]+=1 print("NumPy | Python | Count") print("-----------------------") for npver, pys in sorted(py2np_map.items()): for pyver, count in pys.items(): print(f" {npver} | {pyver:<4} | {count}") # print the "reverse" map rev_map = defaultdict(lambda: defaultdict(int)) for npver, pys in sorted(py2np_map.items()): for pyver, count in pys.items(): rev_map[pyver][npver] = count print("\nPython | NumPy | Count") print("-----------------------") sorter = lambda x: int(x[0].split('.')[1]) for pyver, nps in sorted(rev_map.items(), key=sorter): for npver, count in nps.items(): print(f" {pyver:<4} | {npver} | {count}")