import itertools import math import sys import unittest import warnings import numpy as np from numba import njit, types from numba.tests.support import TestCase from numba.np import numpy_support def sin(x): return math.sin(x) def cos(x): return math.cos(x) def tan(x): return math.tan(x) def sinh(x): return math.sinh(x) def cosh(x): return math.cosh(x) def tanh(x): return math.tanh(x) def asin(x): return math.asin(x) def acos(x): return math.acos(x) def atan(x): return math.atan(x) def atan2(y, x): return math.atan2(y, x) def asinh(x): return math.asinh(x) def acosh(x): return math.acosh(x) def atanh(x): return math.atanh(x) def sqrt(x): return math.sqrt(x) def npy_sqrt(x): return np.sqrt(x) def exp(x): return math.exp(x) def expm1(x): return math.expm1(x) def log(x): return math.log(x) def log1p(x): return math.log1p(x) def log10(x): return math.log10(x) def floor(x): return math.floor(x) def ceil(x): return math.ceil(x) def trunc(x): return math.trunc(x) def isnan(x): return math.isnan(x) def isinf(x): return math.isinf(x) def isfinite(x): return math.isfinite(x) def hypot(x, y): return math.hypot(x, y) def degrees(x): return math.degrees(x) def radians(x): return math.radians(x) def erf(x): return math.erf(x) def erfc(x): return math.erfc(x) def gamma(x): return math.gamma(x) def lgamma(x): return math.lgamma(x) def pow(x, y): return math.pow(x, y) def gcd(x, y): return math.gcd(x, y) def copysign(x, y): return math.copysign(x, y) def frexp(x): return math.frexp(x) def ldexp(x, e): return math.ldexp(x, e) def get_constants(): return math.pi, math.e class TestMathLib(TestCase): def test_constants(self): cfunc = njit(get_constants) self.assertPreciseEqual(cfunc(), cfunc.py_func()) def run_unary(self, pyfunc, x_types, x_values, prec='exact', **kwargs): cfunc = njit(pyfunc) for tx, vx in zip(x_types, x_values): got = cfunc(vx) expected = pyfunc(vx) actual_prec = 'single' if tx is types.float32 else prec msg = 'for input %r' % (vx,) self.assertPreciseEqual(got, expected, prec=actual_prec, msg=msg, **kwargs) def run_binary(self, pyfunc, x_types, x_values, y_values, prec='exact'): cfunc = njit(pyfunc) for ty, x, y in zip(x_types, x_values, y_values): got = cfunc(x, y) expected = pyfunc(x, y) actual_prec = 'single' if ty is types.float32 else prec msg = 'for inputs (%r, %r)' % (x, y) self.assertPreciseEqual(got, expected, prec=actual_prec, msg=msg) def check_predicate_func(self, pyfunc): x_types = [types.int16, types.int32, types.int64, types.uint16, types.uint32, types.uint64, types.float32, types.float32, types.float32, types.float64, types.float64, types.float64] x_values = [0, 0, 0, 0, 0, 0, float('inf'), 0.0, float('nan'), float('inf'), 0.0, float('nan')] self.run_unary(pyfunc, x_types, x_values) def test_sin(self): pyfunc = sin x_types = [types.int16, types.int32, types.int64, types.uint16, types.uint32, types.uint64, types.float32, types.float64] x_values = [-2, -1, -2, 2, 1, 2, .1, .2] self.run_unary(pyfunc, x_types, x_values) @unittest.skipIf(sys.platform == 'win32', "not exactly equal on win32 (issue #597)") def test_cos(self): pyfunc = cos x_types = [types.int16, types.int32, types.int64, types.uint16, types.uint32, types.uint64, types.float32, types.float64] x_values = [-2, -1, -2, 2, 1, 2, .1, .2] self.run_unary(pyfunc, x_types, x_values) def test_tan(self): pyfunc = tan x_types = [types.int16, types.int32, types.int64, types.uint16, types.uint32, types.uint64, types.float32, types.float64] x_values = [-2, -1, -2, 2, 1, 2, .1, .2] self.run_unary(pyfunc, x_types, x_values) def test_sqrt(self): pyfunc = sqrt x_types = [types.int16, types.int32, types.int64, types.uint16, types.uint32, types.uint64, types.float32, types.float64] x_values = [2, 1, 2, 2, 1, 2, .1, .2] self.run_unary(pyfunc, x_types, x_values) def test_npy_sqrt(self): pyfunc = npy_sqrt x_values = [2, 1, 2, 2, 1, 2, .1, .2] # XXX poor precision for int16 inputs x_types = [types.int16, types.uint16] self.run_unary(pyfunc, x_types, x_values, prec='single') x_types = [types.int32, types.int64, types.uint32, types.uint64, types.float32, types.float64] self.run_unary(pyfunc, x_types, x_values) def test_exp(self): pyfunc = exp x_types = [types.int16, types.int32, types.int64, types.uint16, types.uint32, types.uint64, types.float32, types.float64] x_values = [-2, -1, -2, 2, 1, 2, .1, .2] self.run_unary(pyfunc, x_types, x_values) def test_expm1(self): pyfunc = expm1 x_types = [types.int16, types.int32, types.int64, types.uint16, types.uint32, types.uint64, types.float32, types.float64] x_values = [-2, -1, -2, 2, 1, 2, .1, .2] self.run_unary(pyfunc, x_types, x_values) def test_log(self): pyfunc = log x_types = [types.int16, types.int32, types.int64, types.uint16, types.uint32, types.uint64, types.float32, types.float64] x_values = [1, 10, 100, 1000, 100000, 1000000, 0.1, 1.1] self.run_unary(pyfunc, x_types, x_values) def test_log1p(self): pyfunc = log1p x_types = [types.int16, types.int32, types.int64, types.uint16, types.uint32, types.uint64, types.float32, types.float64] x_values = [1, 10, 100, 1000, 100000, 1000000, 0.1, 1.1] self.run_unary(pyfunc, x_types, x_values) def test_log10(self): pyfunc = log10 x_types = [types.int16, types.int32, types.int64, types.uint16, types.uint32, types.uint64, types.float32, types.float64] x_values = [1, 10, 100, 1000, 100000, 1000000, 0.1, 1.1] self.run_unary(pyfunc, x_types, x_values) def test_asin(self): pyfunc = asin x_types = [types.int16, types.int32, types.int64, types.uint16, types.uint32, types.uint64, types.float32, types.float64] x_values = [1, 1, 1, 1, 1, 1, 1., 1.] self.run_unary(pyfunc, x_types, x_values) def test_acos(self): pyfunc = acos x_types = [types.int16, types.int32, types.int64, types.uint16, types.uint32, types.uint64, types.float32, types.float64] x_values = [1, 1, 1, 1, 1, 1, 1., 1.] self.run_unary(pyfunc, x_types, x_values) def test_atan(self): pyfunc = atan x_types = [types.int16, types.int32, types.int64, types.uint16, types.uint32, types.uint64, types.float32, types.float64] x_values = [-2, -1, -2, 2, 1, 2, .1, .2] self.run_unary(pyfunc, x_types, x_values) def test_atan2(self): pyfunc = atan2 x_types = [types.int16, types.int32, types.int64, types.uint16, types.uint32, types.uint64, types.float32, types.float64] x_values = [-2, -1, -2, 2, 1, 2, .1, .2] y_values = [x * 2 for x in x_values] self.run_binary(pyfunc, x_types, x_values, y_values) def test_asinh(self): pyfunc = asinh x_types = [types.int16, types.int32, types.int64, types.uint16, types.uint32, types.uint64, types.float32, types.float64] x_values = [1, 1, 1, 1, 1, 1, 1., 1.] self.run_unary(pyfunc, x_types, x_values, prec='double') def test_acosh(self): pyfunc = acosh x_types = [types.int16, types.int32, types.int64, types.uint16, types.uint32, types.uint64, types.float32, types.float64] x_values = [1, 1, 1, 1, 1, 1, 1., 1.] self.run_unary(pyfunc, x_types, x_values) def test_atanh(self): pyfunc = atanh x_types = [types.int16, types.int32, types.int64, types.uint16, types.uint32, types.uint64, types.float32, types.float64] x_values = [0, 0, 0, 0, 0, 0, 0.1, 0.1] self.run_unary(pyfunc, x_types, x_values, prec='double') def test_sinh(self): pyfunc = sinh x_types = [types.int16, types.int32, types.int64, types.uint16, types.uint32, types.uint64, types.float32, types.float64] x_values = [1, 1, 1, 1, 1, 1, 1., 1.] self.run_unary(pyfunc, x_types, x_values) def test_cosh(self): pyfunc = cosh x_types = [types.int16, types.int32, types.int64, types.uint16, types.uint32, types.uint64, types.float32, types.float64] x_values = [1, 1, 1, 1, 1, 1, 1., 1.] self.run_unary(pyfunc, x_types, x_values) def test_tanh(self): pyfunc = tanh x_types = [types.int16, types.int32, types.int64, types.uint16, types.uint32, types.uint64, types.float32, types.float64] x_values = [0, 0, 0, 0, 0, 0, 0.1, 0.1] self.run_unary(pyfunc, x_types, x_values) def test_floor(self): pyfunc = floor x_types = [types.int16, types.int32, types.int64, types.uint16, types.uint32, types.uint64, types.float32, types.float64] x_values = [0, 0, 0, 0, 0, 0, 0.1, 1.9] self.run_unary(pyfunc, x_types, x_values) def test_ceil(self): pyfunc = ceil x_types = [types.int16, types.int32, types.int64, types.uint16, types.uint32, types.uint64, types.float32, types.float64] x_values = [0, 0, 0, 0, 0, 0, 0.1, 1.9] self.run_unary(pyfunc, x_types, x_values) def test_trunc(self): pyfunc = trunc x_types = [types.int16, types.int32, types.int64, types.uint16, types.uint32, types.uint64, types.float32, types.float64] x_values = [0, 0, 0, 0, 0, 0, 0.1, 1.9] self.run_unary(pyfunc, x_types, x_values) def test_isnan(self): self.check_predicate_func(isnan) def test_isinf(self): self.check_predicate_func(isinf) def test_isfinite(self): self.check_predicate_func(isfinite) def test_hypot(self): pyfunc = hypot x_types = [types.int64, types.uint64, types.float32, types.float64] x_values = [1, 2, 3, 4, 5, 6, .21, .34] y_values = [x + 2 for x in x_values] # Issue #563: precision issues with math.hypot() under Windows. prec = 'single' self.run_binary(pyfunc, x_types, x_values, y_values, prec) # Check that values that overflow in naive implementations do not # in the numba impl def naive_hypot(x, y): return math.sqrt(x * x + y * y) cfunc = njit(pyfunc) for fltty in (types.float32, types.float64): dt = numpy_support.as_dtype(fltty).type val = dt(np.finfo(dt).max / 30.) nb_ans = cfunc(val, val) self.assertPreciseEqual(nb_ans, pyfunc(val, val), prec='single') self.assertTrue(np.isfinite(nb_ans)) with warnings.catch_warnings(): warnings.simplefilter("error", RuntimeWarning) self.assertRaisesRegex(RuntimeWarning, 'overflow encountered in .*scalar', naive_hypot, val, val) def test_degrees(self): pyfunc = degrees x_types = [types.int16, types.int32, types.int64, types.uint16, types.uint32, types.uint64, types.float32, types.float64] x_values = [1, 1, 1, 1, 1, 1, 1., 1.] self.run_unary(pyfunc, x_types, x_values) def test_radians(self): pyfunc = radians x_types = [types.int16, types.int32, types.int64, types.uint16, types.uint32, types.uint64, types.float32, types.float64] x_values = [1, 1, 1, 1, 1, 1, 1., 1.] self.run_unary(pyfunc, x_types, x_values) def test_erf(self): pyfunc = erf x_values = [1., 1., -1., -0.0, 0.0, 0.5, 5, float('inf')] x_types = [types.float32, types.float64] * (len(x_values) // 2) self.run_unary(pyfunc, x_types, x_values, prec='double', ulps=2) def test_erfc(self): pyfunc = erfc x_values = [1., 1., -1., -0.0, 0.0, 0.5, 5, float('inf')] x_types = [types.float32, types.float64] * (len(x_values) // 2) self.run_unary(pyfunc, x_types, x_values, prec='double', ulps=4) def test_gamma(self): pyfunc = gamma x_values = [1., -0.9, -0.5, 0.5] x_types = [types.float32, types.float64] * (len(x_values) // 2) self.run_unary(pyfunc, x_types, x_values, prec='double', ulps=3) x_values = [-0.1, 0.1, 2.5, 10.1, 50., float('inf')] x_types = [types.float64] * len(x_values) self.run_unary(pyfunc, x_types, x_values, prec='double', ulps=8) def test_lgamma(self): pyfunc = lgamma x_values = [1., -0.9, -0.1, 0.1, 200., 1e10, 1e30, float('inf')] x_types = [types.float32, types.float64] * (len(x_values) // 2) self.run_unary(pyfunc, x_types, x_values, prec='double') def test_pow(self): pyfunc = pow x_types = [types.int16, types.int32, types.int64, types.uint16, types.uint32, types.uint64, types.float32, types.float64] x_values = [-2, -1, -2, 2, 1, 2, .1, .2] y_values = [x * 2 for x in x_values] self.run_binary(pyfunc, x_types, x_values, y_values) def test_gcd(self): from itertools import product, repeat, chain pyfunc = gcd signed_args = product( sorted(types.signed_domain), *repeat((-2, -1, 0, 1, 2, 7, 10), 2) ) unsigned_args = product( sorted(types.unsigned_domain), *repeat((0, 1, 2, 7, 9, 16), 2) ) x_types, x_values, y_values = zip(*chain(signed_args, unsigned_args)) self.run_binary(pyfunc, x_types, x_values, y_values) def test_copysign(self): pyfunc = copysign value_types = [types.float32, types.float64] values = [-2, -1, -0.0, 0.0, 1, 2, float('-inf'), float('inf'), float('nan')] x_types, x_values, y_values = list(zip( *itertools.product(value_types, values, values))) self.run_binary(pyfunc, x_types, x_values, y_values) def test_frexp(self): pyfunc = frexp x_types = [types.float32, types.float64] x_values = [-2.5, -0.0, 0.0, 3.5, float('-inf'), float('inf'), float('nan')] self.run_unary(pyfunc, x_types, x_values, prec='exact') def test_ldexp(self): pyfunc = ldexp cfunc = njit(pyfunc) for fltty in (types.float32, types.float64): for args in [(2.5, -2), (2.5, 1), (0.0, 0), (0.0, 1), (-0.0, 0), (-0.0, 1), (float('inf'), 0), (float('-inf'), 0), (float('nan'), 0)]: msg = 'for input %r' % (args,) self.assertPreciseEqual(cfunc(*args), pyfunc(*args)) if __name__ == '__main__': unittest.main()