import numba import numpy as np import sys import itertools import gc from numba import types from numba.tests.support import TestCase, MemoryLeakMixin from numba.np.random.generator_methods import _get_proper_func from numba.np.random.generator_core import next_uint32, next_uint64, next_double from numpy.random import MT19937, Generator from numba.core.errors import TypingError from numba.tests.support import run_in_new_process_caching, SerialMixin # TODO: Following testing tolerance adjustments should be reduced # once NumPy Generator's fmadd issue described below is resolved: # https://github.com/numba/numba/pull/8038#issuecomment-1165571368 # The progress is being tracked as one of the tasks in: # https://github.com/numba/numba/issues/8519 adjusted_ulp_prec = 2048 class TestHelperFuncs(TestCase): def test_proper_func_provider(self): def test_32bit_func(): return 32 def test_64bit_func(): return 64 self.assertEqual(_get_proper_func(test_32bit_func, test_64bit_func, np.float64)[0](), 64) self.assertEqual(_get_proper_func(test_32bit_func, test_64bit_func, np.float32)[0](), 32) # With any other datatype it should return a TypingError with self.assertRaises(TypingError) as raises: _get_proper_func(test_32bit_func, test_64bit_func, np.int32) self.assertIn( 'Argument dtype is not one of the expected type(s)', str(raises.exception) ) with self.assertRaises(TypingError) as raises: _get_proper_func(test_32bit_func, test_64bit_func, types.float64) self.assertIn( 'Argument dtype is not one of the expected type(s)', str(raises.exception) ) def test_check_types(self): rng = np.random.default_rng(1) py_func = lambda x: x.normal(loc=(0,)) numba_func = numba.njit(cache=True)(py_func) with self.assertRaises(TypingError) as raises: numba_func(rng) self.assertIn( 'Argument loc is not one of the expected type(s): ' + '[, ' + ', ' + ', ]', str(raises.exception) ) def test_integers_arg_check(self): rng = np.random.default_rng(1) py_func = lambda x, low, high, dtype: \ x.integers(low=low, high=high, dtype=dtype, endpoint=True) numba_func = numba.njit()(py_func) numba_func_low = numba.njit()(py_func) py_func = lambda x, low, high, dtype: \ x.integers(low=low, high=high, dtype=dtype, endpoint=False) numba_func_endpoint_false = numba.njit()(py_func) cases = [ # low, high, dtype (np.iinfo(np.uint8).min, np.iinfo(np.uint8).max, np.uint8), (np.iinfo(np.int8).min, np.iinfo(np.int8).max, np.int8), (np.iinfo(np.uint16).min, np.iinfo(np.uint16).max, np.uint16), (np.iinfo(np.int16).min, np.iinfo(np.int16).max, np.int16), (np.iinfo(np.uint32).min, np.iinfo(np.uint32).max, np.uint32), (np.iinfo(np.int32).min, np.iinfo(np.int32).max, np.int32), ] for low, high, dtype in cases: with self.subTest(low=low, high=high, dtype=dtype): with self.assertRaises(ValueError) as raises: # min - 1 numba_func_low(rng, low - 1, high, dtype) self.assertIn( 'low is out of bounds', str(raises.exception) ) with self.assertRaises(ValueError) as raises: # max + 1, endpoint=True numba_func(rng, low, high + 1, dtype) self.assertIn( 'high is out of bounds', str(raises.exception) ) with self.assertRaises(ValueError) as raises: # max + 2, endpoint=False numba_func_endpoint_false(rng, low, high + 2, dtype) self.assertIn( 'high is out of bounds', str(raises.exception) ) low, high, dtype = (np.iinfo(np.uint64).min, np.iinfo(np.uint64).max, np.uint64) with self.assertRaises(ValueError) as raises: # min - 1 numba_func_low(rng, low - 1, high, dtype) self.assertIn( 'low is out of bounds', str(raises.exception) ) low, high, dtype = (np.iinfo(np.int64).min, np.iinfo(np.int64).max, np.int64) with self.assertRaises(ValueError) as raises: # max + 1, endpoint=True numba_func(rng, low, high + 1, dtype) self.assertIn( 'high is out of bounds', str(raises.exception) ) with self.assertRaises(ValueError) as raises: # max + 2, endpoint=False numba_func_endpoint_false(rng, low, high + 2, dtype) self.assertIn( 'high is out of bounds', str(raises.exception) ) with self.assertRaises(ValueError) as raises: numba_func(rng, 105, 100, np.uint32) self.assertIn( 'low is greater than high in given interval', str(raises.exception) ) def test_generator_caching(): nb_rng = np.random.default_rng(1) np_rng = np.random.default_rng(1) py_func = lambda x: x.random(10) numba_func = numba.njit(cache=True)(py_func) assert np.allclose(np_rng.random(10), numba_func(nb_rng)) class TestRandomGenerators(MemoryLeakMixin, TestCase): def check_numpy_parity(self, distribution_func, bitgen_type=None, seed=None, test_size=None, test_dtype=None, ulp_prec=5): distribution_func = numba.njit(distribution_func) if seed is None: seed = 1 if bitgen_type is None: numba_rng_instance = np.random.default_rng(seed=seed) numpy_rng_instance = np.random.default_rng(seed=seed) else: numba_rng_instance = Generator(bitgen_type(seed)) numpy_rng_instance = Generator(bitgen_type(seed)) # Check parity for different size cases numba_res = distribution_func(numba_rng_instance, test_size, test_dtype) numpy_res = distribution_func.py_func(numpy_rng_instance, test_size, test_dtype) if (isinstance(numba_res, np.ndarray) and np.issubdtype(numba_res.dtype, np.floating)) \ or isinstance(numba_res, float): # Float scalars and arrays np.testing.assert_array_max_ulp(numpy_res, numba_res, maxulp=ulp_prec, dtype=test_dtype) else: # Bool/int scalars and arrays np.testing.assert_equal(numba_res, numpy_res) # Check if the end state of both BitGenerators is same # after drawing the distributions numba_gen_state = numba_rng_instance.__getstate__()['state'] numpy_gen_state = numpy_rng_instance.__getstate__()['state'] for _state_key in numpy_gen_state: self.assertPreciseEqual(numba_gen_state[_state_key], numpy_gen_state[_state_key]) def _test_bitgen_func_parity(self, func_name, bitgen_func, seed=1): numba_rng_instance = np.random.default_rng(seed=seed) numpy_rng_instance = np.random.default_rng(seed=seed) numpy_func = getattr(numpy_rng_instance.bit_generator.ctypes, func_name) numpy_res = numpy_func(numpy_rng_instance.bit_generator.ctypes.state) numba_func = numba.njit(lambda x: bitgen_func(x.bit_generator)) numba_res = numba_func(numba_rng_instance) self.assertPreciseEqual(numba_res, numpy_res) def _check_invalid_types(self, dist_func, arg_list, valid_args, invalid_args): rng = np.random.default_rng() for idx, _arg in enumerate(arg_list): curr_args = valid_args.copy() curr_args[idx] = invalid_args[idx] curr_args = [rng] + curr_args nb_dist_func = numba.njit(dist_func) with self.assertRaises(TypingError) as raises: nb_dist_func(*curr_args) self.assertIn( f'Argument {_arg} is not one of the expected type(s):', str(raises.exception) ) def test_npgen_boxing_unboxing(self): rng_instance = np.random.default_rng() numba_func = numba.njit(lambda x: x) self.assertEqual(rng_instance, numba_func(rng_instance)) self.assertEqual(id(rng_instance), id(numba_func(rng_instance))) def test_npgen_boxing_refcount(self): rng_instance = np.random.default_rng() no_box = numba.njit(lambda x:x.random()) do_box = numba.njit(lambda x:x) y = do_box(rng_instance) gc.collect() ref_1 = sys.getrefcount(rng_instance) del y no_box(rng_instance) gc.collect() ref_2 = sys.getrefcount(rng_instance) self.assertEqual(ref_1, ref_2 + 1) def test_bitgen_funcs(self): func_names = ["next_uint32", "next_uint64", "next_double"] funcs = [next_uint32, next_uint64, next_double] for _func, _func_name in zip(funcs, func_names): with self.subTest(_func=_func, _func_name=_func_name): self._test_bitgen_func_parity(_func_name, _func) def test_integers(self): test_sizes = [None, (), (100,), (10, 20, 30)] test_dtypes = [np.int64, np.int32, np.int16, np.int8, np.uint64, np.uint32, np.uint16, np.uint8] bitgen_types = [None, MT19937] # Test with no arguments dist_func = lambda x, size, dtype:x.integers(0, 100) with self.subTest(): self.check_numpy_parity(dist_func, test_size=None, test_dtype=None, ulp_prec=0) dist_func = lambda x, size, dtype:\ x.integers(5, 10, size=size, dtype=dtype) for _size in test_sizes: for _dtype in test_dtypes: for _bitgen in bitgen_types: with self.subTest(_size=_size, _dtype=_dtype, _bitgen=_bitgen): self.check_numpy_parity(dist_func, _bitgen, None, _size, _dtype, 0) # Checking dtype = bool seperately test_sizes = [None, (), (100,), (10, 20, 30)] bitgen_types = [None, MT19937] dist_func = lambda x, size, dtype:\ x.integers(False, True, size=size, dtype=np.bool_) for _size in test_sizes: for _bitgen in bitgen_types: with self.subTest(_size=_size, _bitgen=_bitgen): self.check_numpy_parity(dist_func, _bitgen, None, _size, np.bool_, 0) # Test dtype casting for high and low dist_func = lambda x, size, dtype: \ x.integers(np.uint8(0), np.int64(100)) with self.subTest(): self.check_numpy_parity(dist_func, test_size=None, test_dtype=None) dist_func = lambda x, low, high, size, dtype, endpoint:\ x.integers(low=low, high=high, size=size, dtype=dtype, endpoint=endpoint) self._check_invalid_types(dist_func, ['low', 'high', 'size', 'dtype', 'endpoint'], [1, 5, (1,), np.int64, True], ['x', 'x', ('x',), np.float64, 'x']) # Testing .integers() dtype wise def test_integers_cases(self): cases = [ # low, high, dtype (5, 6, np.uint64), # rng == 0 (rng stands for range) (5, 100, np.uint64), # rng <= 0xFFFFFFFF (0, 0xFFFFFFFFFF, np.uint64), # rng > 0xFFFFFFFF (0, 0xFFFFFFFFFFFFFFFF - 1, np.uint64),# rng == 0xFFFFFFFFFFFFFFFF-1 (0, 0xFFFFFFFFFFFFFFFF, np.uint64), # rng == 0xFFFFFFFFFFFFFFFF (5, 6, np.int64), # rng == 0 (5, 100, np.int64), # rng <= 0xFFFFFFFF (0, 0xFFFFFFFFFF, np.int64), # rng > 0xFFFFFFFF (0, 0xFFFFFFFFFFFFFFF - 1, np.int64), # rng == 0xFFFFFFFFFFFFFFF - 1 (0, 0xFFFFFFFFFFFFFFF, np.int64), # rng == 0xFFFFFFFFFFFFFFF (-0xFFFFFFFFFFFFFFF, 0xFFFFFFFFFFFFFFF, np.int64), # min/max (5, 6, np.uint32), # rng == 0 (5, 100, np.uint32), # rng < 0xFFFFFFFF (0, 0xFFFFFFFF - 1, np.uint32), # rng == 0xFFFFFFFF - 1 (0, 0xFFFFFFFF, np.uint32), # rng == 0xFFFFFFFF (5, 6, np.int32), # rng == 0 (5, 100, np.int32), # rng < 0xFFFFFFFF (0, 0xFFFFFFF - 1, np.int32), # rng == 0xFFFFFFF - 1 (0, 0xFFFFFFF, np.int32), # rng == 0xFFFFFFF (-0xFFFFFFF, 0xFFFFFFF, np.int32), (5, 6, np.uint16), # rng == 0 (5, 100, np.uint16), # rng < 0xFFFF (0, 0xFFFF - 1, np.uint16), # rng == 0xFFFF - 1 (0, 0xFFFF, np.uint16), # rng == 0xFFFF (5, 6, np.int16), # rng == 0 (5, 10, np.int16), # rng < 0xFFF (0, 0xFFF - 1, np.int16), # rng == 0xFFF - 1 (0, 0xFFF, np.int16), # rng == 0xFFF (-0xFFF, 0xFFF, np.int16), (5, 6, np.uint8), # rng == 0 (5, 10, np.uint8), # rng < 0xFF (0, 0xFF - 1, np.uint8), # rng == 0xFF - 1 (0, 0xFF, np.uint8), # rng == 0xFF (5, 6, np.int8), # rng == 0 (5, 10, np.int8), # rng < 0xF (0, 0xF - 1, np.int8), # rng == 0xF-1 (0, 0xF, np.int8), # rng == 0xF (-0xF, 0xF, np.int8), ] size = (2, 3) for low, high, dtype in cases: with self.subTest(low=low, high=high, dtype=dtype): dist_func = lambda x, size, dtype:\ x.integers(low, high, size=size, dtype=dtype) self.check_numpy_parity(dist_func, None, None, size, dtype, 0) def test_random(self): test_sizes = [None, (), (100,), (10, 20, 30)] test_dtypes = [np.float32, np.float64] bitgen_types = [None, MT19937] # Test with no arguments dist_func = lambda x, size, dtype:x.random() with self.subTest(): self.check_numpy_parity(dist_func, test_size=None, test_dtype=None) dist_func = lambda x, size, dtype:x.random(size=size, dtype=dtype) for _size in test_sizes: for _dtype in test_dtypes: for _bitgen in bitgen_types: with self.subTest(_size=_size, _dtype=_dtype, _bitgen=_bitgen): self.check_numpy_parity(dist_func, _bitgen, None, _size, _dtype) dist_func = lambda x, size, dtype:\ x.random(size=size, dtype=dtype) self._check_invalid_types(dist_func, ['size', 'dtype'], [(1,), np.float64], [('x',), 0.]) def test_standard_normal(self): test_sizes = [None, (), (100,), (10, 20, 30)] test_dtypes = [np.float32, np.float64] bitgen_types = [None, MT19937] # Test with no arguments dist_func = lambda x, size, dtype:x.standard_normal() with self.subTest(): self.check_numpy_parity(dist_func, test_size=None, test_dtype=None) dist_func = lambda x, size, dtype:\ x.standard_normal(size=size, dtype=dtype) for _size in test_sizes: for _dtype in test_dtypes: for _bitgen in bitgen_types: with self.subTest(_size=_size, _dtype=_dtype, _bitgen=_bitgen): self.check_numpy_parity(dist_func, _bitgen, None, _size, _dtype) dist_func = lambda x, size, dtype:\ x.standard_normal(size=size, dtype=dtype) self._check_invalid_types(dist_func, ['size', 'dtype'], [(1,), np.float32], [('x',), 0]) def test_standard_exponential(self): test_sizes = [None, (), (100,), (10, 20, 30)] test_dtypes = [np.float32, np.float64] bitgen_types = [None, MT19937] # Test with no arguments dist_func = lambda x, size, dtype:x.standard_exponential() with self.subTest(): self.check_numpy_parity(dist_func, test_size=None, test_dtype=None) dist_func = lambda x, size, dtype:\ x.standard_exponential(size=size, dtype=dtype) for _size in test_sizes: for _dtype in test_dtypes: for _bitgen in bitgen_types: with self.subTest(_size=_size, _dtype=_dtype, _bitgen=_bitgen): self.check_numpy_parity(dist_func, _bitgen, None, _size, _dtype) dist_func = lambda x, method, size, dtype:\ x.standard_exponential(method=method, size=size, dtype=dtype) self._check_invalid_types(dist_func, ['method', 'size', 'dtype'], ['zig', (1,), np.float32], [0, ('x',), 0]) def test_standard_exponential_inv(self): test_sizes = [None, (), (100,), (10, 20, 30)] test_dtypes = [np.float32, np.float64] bitgen_types = [None, MT19937] dist_func = lambda x, size, dtype:\ x.standard_exponential(size=size, dtype=dtype, method='inv') for _size in test_sizes: for _dtype in test_dtypes: for _bitgen in bitgen_types: with self.subTest(_size=_size, _dtype=_dtype, _bitgen=_bitgen): self.check_numpy_parity(dist_func, _bitgen, None, _size, _dtype) def test_standard_gamma(self): test_sizes = [None, (), (100,), (10, 20, 30)] test_dtypes = [np.float32, np.float64] bitgen_types = [None, MT19937] dist_func = lambda x, size, dtype: \ x.standard_gamma(shape=5.0, size=size, dtype=dtype) for _size in test_sizes: for _dtype in test_dtypes: for _bitgen in bitgen_types: with self.subTest(_size=_size, _dtype=_dtype, _bitgen=_bitgen): self.check_numpy_parity(dist_func, _bitgen, None, _size, _dtype, adjusted_ulp_prec) dist_func = lambda x, shape, size, dtype:\ x.standard_gamma(shape=shape, size=size, dtype=dtype) self._check_invalid_types(dist_func, ['shape', 'size', 'dtype'], [5.0, (1,), np.float32], ['x', ('x',), 0]) def test_normal(self): # For this test dtype argument is never used, so we pass [None] as dtype # to make sure it runs only once with default system type. test_sizes = [None, (), (100,), (10, 20, 30)] bitgen_types = [None, MT19937] # Test with no arguments dist_func = lambda x, size, dtype:x.normal() with self.subTest(): self.check_numpy_parity(dist_func, test_size=None, test_dtype=None, ulp_prec=adjusted_ulp_prec) dist_func = lambda x, size, dtype:x.normal(loc=1.5, scale=3, size=size) for _size in test_sizes: for _bitgen in bitgen_types: with self.subTest(_size=_size, _bitgen=_bitgen): self.check_numpy_parity(dist_func, _bitgen, None, _size, None, adjusted_ulp_prec) dist_func = lambda x, loc, scale, size:\ x.normal(loc=loc, scale=scale, size=size) self._check_invalid_types(dist_func, ['loc', 'scale', 'size'], [1.5, 3, (1,)], ['x', 'x', ('x',)]) def test_uniform(self): # For this test dtype argument is never used, so we pass [None] as dtype # to make sure it runs only once with default system type. test_sizes = [None, (), (100,), (10, 20, 30)] bitgen_types = [None, MT19937] # Test with no arguments dist_func = lambda x, size, dtype:x.uniform() with self.subTest(): self.check_numpy_parity(dist_func, test_size=None, test_dtype=None, ulp_prec=adjusted_ulp_prec) dist_func = lambda x, size, dtype:x.uniform(low=1.5, high=3, size=size) for _size in test_sizes: for _bitgen in bitgen_types: with self.subTest(_size=_size, _bitgen=_bitgen): self.check_numpy_parity(dist_func, _bitgen, None, _size, None, adjusted_ulp_prec) dist_func = lambda x, low, high, size:\ x.uniform(low=low, high=high, size=size) self._check_invalid_types(dist_func, ['low', 'high', 'size'], [1.5, 3, (1,)], ['x', 'x', ('x',)]) def test_exponential(self): # For this test dtype argument is never used, so we pass [None] as dtype # to make sure it runs only once with default system type. test_sizes = [None, (), (100,), (10, 20, 30)] bitgen_types = [None, MT19937] # Test with no arguments dist_func = lambda x, size, dtype:x.exponential() with self.subTest(): self.check_numpy_parity(dist_func, test_size=None, test_dtype=None) dist_func = lambda x, size, dtype:x.exponential(scale=1.5, size=size) for _size in test_sizes: for _bitgen in bitgen_types: with self.subTest(_size=_size, _bitgen=_bitgen): self.check_numpy_parity(dist_func, _bitgen, None, _size, None) dist_func = lambda x, scale, size:\ x.exponential(scale=scale, size=size) self._check_invalid_types(dist_func, ['scale', 'size'], [1.5, (1,)], ['x', ('x',)]) def test_gamma(self): # For this test dtype argument is never used, so we pass [None] as dtype # to make sure it runs only once with default system type. test_sizes = [None, (), (100,), (10, 20, 30)] bitgen_types = [None, MT19937] dist_func = lambda x, size, dtype:x.gamma(shape=5.0, scale=1.5, size=size) for _size in test_sizes: for _bitgen in bitgen_types: with self.subTest(_size=_size, _bitgen=_bitgen): self.check_numpy_parity(dist_func, _bitgen, None, _size, None, adjusted_ulp_prec) dist_func = lambda x, shape, scale, size:\ x.gamma(shape=shape, scale=scale, size=size) self._check_invalid_types(dist_func, ['shape', 'scale', 'size'], [5.0, 1.5, (1,)], ['x', 'x', ('x',)]) def test_beta(self): # For this test dtype argument is never used, so we pass [None] as dtype # to make sure it runs only once with default system type. test_sizes = [None, (), (100,), (10, 20, 30)] bitgen_types = [None, MT19937] dist_func = lambda x, size, dtype:x.beta(a=1.5, b=2.5, size=size) for _size in test_sizes: for _bitgen in bitgen_types: with self.subTest(_size=_size, _bitgen=_bitgen): self.check_numpy_parity(dist_func, _bitgen, None, _size, None, adjusted_ulp_prec) dist_func = lambda x, a, b, size:x.beta(a=a, b=b, size=size) self._check_invalid_types(dist_func, ['a', 'b', 'size'], [5.0, 1.5, (1,)], ['x', 'x', ('x',)]) def test_f(self): # For this test dtype argument is never used, so we pass [None] as dtype # to make sure it runs only once with default system type. test_sizes = [None, (), (100,), (10, 20, 30)] bitgen_types = [None, MT19937] dist_func = lambda x, size, dtype:x.f(dfnum=2, dfden=3, size=size) for _size in test_sizes: for _bitgen in bitgen_types: with self.subTest(_size=_size, _bitgen=_bitgen): self.check_numpy_parity(dist_func, _bitgen, None, _size, None, adjusted_ulp_prec) dist_func = lambda x, dfnum, dfden, size:\ x.f(dfnum=dfnum, dfden=dfden, size=size) self._check_invalid_types(dist_func, ['dfnum', 'dfden', 'size'], [5, 1, (1,)], ['x', 'x', ('x',)]) def test_chisquare(self): # For this test dtype argument is never used, so we pass [None] as dtype # to make sure it runs only once with default system type. test_sizes = [None, (), (100,), (10, 20, 30)] bitgen_types = [None, MT19937] dist_func = lambda x, size, dtype:x.chisquare(df=2, size=size) for _size in test_sizes: for _bitgen in bitgen_types: with self.subTest(_size=_size, _bitgen=_bitgen): self.check_numpy_parity(dist_func, _bitgen, None, _size, None, adjusted_ulp_prec) dist_func = lambda x, df, size:\ x.chisquare(df=df, size=size) self._check_invalid_types(dist_func, ['df', 'size'], [2, (1,)], ['x', ('x',)]) def test_standard_cauchy(self): # For this test dtype argument is never used, so we pass [None] as dtype # to make sure it runs only once with default system type. test_sizes = [None, (), (100,), (10, 20, 30)] bitgen_types = [None, MT19937] # Test with no arguments dist_func = lambda x, size, dtype:x.standard_cauchy() with self.subTest(): self.check_numpy_parity(dist_func, test_size=None, test_dtype=None) dist_func = lambda x, size, dtype:x.standard_cauchy(size=size) for _size in test_sizes: for _bitgen in bitgen_types: with self.subTest(_size=_size, _bitgen=_bitgen): self.check_numpy_parity(dist_func, _bitgen, None, _size, None) dist_func = lambda x, size:x.standard_cauchy(size=size) self._check_invalid_types(dist_func, ['size'], [(1,)], [('x',)]) def test_pareto(self): # For this test dtype argument is never used, so we pass [None] as dtype # to make sure it runs only once with default system type. test_sizes = [None, (), (100,), (10, 20, 30)] bitgen_types = [None, MT19937] dist_func = lambda x, size, dtype:x.pareto(a=1.0, size=size) for _size in test_sizes: for _bitgen in bitgen_types: with self.subTest(_size=_size, _bitgen=_bitgen): self.check_numpy_parity(dist_func, _bitgen, None, _size, None) dist_func = lambda x, a, size:x.pareto(a=a, size=size) self._check_invalid_types(dist_func, ['a', 'size'], [1, (1,)], ['x', ('x',)]) def test_weibull(self): # For this test dtype argument is never used, so we pass [None] as dtype # to make sure it runs only once with default system type. test_sizes = [None, (), (100,), (10, 20, 30)] bitgen_types = [None, MT19937] dist_func = lambda x, size, dtype:x.weibull(a=1.0, size=size) for _size in test_sizes: for _bitgen in bitgen_types: with self.subTest(_size=_size, _bitgen=_bitgen): self.check_numpy_parity(dist_func, _bitgen, None, _size, None) dist_func = lambda x, a, size:x.weibull(a=a, size=size) self._check_invalid_types(dist_func, ['a', 'size'], [1, (1,)], ['x', ('x',)]) def test_power(self): # For this test dtype argument is never used, so we pass [None] as dtype # to make sure it runs only once with default system type. test_sizes = [None, (), (100,), (10, 20, 30)] bitgen_types = [None, MT19937] dist_func = lambda x, size, dtype:x.power(a=0.75, size=size) for _size in test_sizes: for _bitgen in bitgen_types: with self.subTest(_size=_size, _bitgen=_bitgen): self.check_numpy_parity(dist_func, _bitgen, None, _size, None) dist_func = lambda x, a, size:x.power(a=a, size=size) self._check_invalid_types(dist_func, ['a', 'size'], [0.75, (1,)], ['x', ('x',)]) def test_laplace(self): # For this test dtype argument is never used, so we pass [None] as dtype # to make sure it runs only once with default system type. test_sizes = [None, (), (100,), (10, 20, 30)] bitgen_types = [None, MT19937] # Test with no arguments dist_func = lambda x, size, dtype:x.laplace() with self.subTest(): self.check_numpy_parity(dist_func, test_size=None, test_dtype=None, ulp_prec=adjusted_ulp_prec) dist_func = lambda x, size, dtype:\ x.laplace(loc=1.0, scale=1.5, size=size) for _size in test_sizes: for _bitgen in bitgen_types: with self.subTest(_size=_size, _bitgen=_bitgen): self.check_numpy_parity(dist_func, _bitgen, None, _size, None, adjusted_ulp_prec) dist_func = lambda x, loc, scale, size:\ x.laplace(loc=loc, scale=scale, size=size) self._check_invalid_types(dist_func, ['loc', 'scale', 'size'], [1.0, 1.5, (1,)], ['x', 'x', ('x',)]) def test_logistic(self): # For this test dtype argument is never used, so we pass [None] as dtype # to make sure it runs only once with default system type. test_sizes = [None, (), (100,), (10, 20, 30)] bitgen_types = [None, MT19937] # Test with no arguments dist_func = lambda x, size, dtype:x.logistic() with self.subTest(): self.check_numpy_parity(dist_func, test_size=None, test_dtype=None, ulp_prec=adjusted_ulp_prec) dist_func = lambda x, size, dtype:\ x.logistic(loc=1.0,scale=1.5, size=size) for _size in test_sizes: for _bitgen in bitgen_types: with self.subTest(_size=_size, _bitgen=_bitgen): self.check_numpy_parity(dist_func, _bitgen, None, _size, None, adjusted_ulp_prec) dist_func = lambda x, loc, scale, size:\ x.logistic(loc=loc, scale=scale, size=size) self._check_invalid_types(dist_func, ['loc', 'scale', 'size'], [1.0, 1.5, (1,)], ['x', 'x', ('x',)]) def test_lognormal(self): # For this test dtype argument is never used, so we pass [None] as dtype # to make sure it runs only once with default system type. test_sizes = [None, (), (100,), (10, 20, 30)] bitgen_types = [None, MT19937] # Test with no arguments dist_func = lambda x, size, dtype:x.lognormal() with self.subTest(): self.check_numpy_parity(dist_func, test_size=None, test_dtype=None, ulp_prec=adjusted_ulp_prec) dist_func = lambda x, size, dtype:\ x.lognormal(mean=5.0, sigma=1.5, size=size) for _size in test_sizes: for _bitgen in bitgen_types: with self.subTest(_size=_size, _bitgen=_bitgen): self.check_numpy_parity(dist_func, _bitgen, None, _size, None, adjusted_ulp_prec) dist_func = lambda x, mean, sigma, size:\ x.lognormal(mean=mean, sigma=sigma, size=size) self._check_invalid_types(dist_func, ['mean', 'sigma', 'size'], [1.0, 1.5, (1,)], ['x', 'x', ('x',)]) def test_rayleigh(self): # For this test dtype argument is never used, so we pass [None] as dtype # to make sure it runs only once with default system type. test_sizes = [None, (), (100,), (10, 20, 30)] bitgen_types = [None, MT19937] # Test with no arguments dist_func = lambda x, size, dtype:x.rayleigh() with self.subTest(): self.check_numpy_parity(dist_func, test_size=None, test_dtype=None) dist_func = lambda x, size, dtype:x.rayleigh(scale=1.5, size=size) for _size in test_sizes: for _bitgen in bitgen_types: with self.subTest(_size=_size, _bitgen=_bitgen): self.check_numpy_parity(dist_func, _bitgen, None, _size, None) dist_func = lambda x, scale, size:x.rayleigh(scale=scale, size=size) self._check_invalid_types(dist_func, ['scale', 'size'], [1.5, (1,)], ['x', ('x',)]) def test_standard_t(self): # For this test dtype argument is never used, so we pass [None] as dtype # to make sure it runs only once with default system type. test_sizes = [None, (), (100,), (10, 20, 30)] bitgen_types = [None, MT19937] dist_func = lambda x, size, dtype:x.standard_t(df=2, size=size) for _size in test_sizes: for _bitgen in bitgen_types: with self.subTest(_size=_size, _bitgen=_bitgen): self.check_numpy_parity(dist_func, _bitgen, None, _size, None, adjusted_ulp_prec) dist_func = lambda x, df, size:x.standard_t(df=df, size=size) self._check_invalid_types(dist_func, ['df', 'size'], [2, (1,)], ['x', ('x',)]) def test_wald(self): # For this test dtype argument is never used, so we pass [None] as dtype # to make sure it runs only once with default system type. test_sizes = [None, (), (100,), (10, 20, 30)] bitgen_types = [None, MT19937] dist_func = lambda x, size, dtype:x.wald(mean=5.0, scale=1.5, size=size) for _size in test_sizes: for _bitgen in bitgen_types: with self.subTest(_size=_size, _bitgen=_bitgen): self.check_numpy_parity(dist_func, _bitgen, None, _size, None, adjusted_ulp_prec) dist_func = lambda x, mean, scale, size:\ x.wald(mean=mean, scale=scale, size=size) self._check_invalid_types(dist_func, ['mean', 'scale', 'size'], [1.0, 1.5, (1,)], ['x', 'x', ('x',)]) def test_geometric(self): # For this test dtype argument is never used, so we pass [None] as dtype # to make sure it runs only once with default system type. test_sizes = [None, (), (100,), (10, 20, 30)] bitgen_types = [None, MT19937] dist_func = lambda x, size, dtype:x.geometric(p=0.75, size=size) for _size in test_sizes: for _bitgen in bitgen_types: with self.subTest(_size=_size, _bitgen=_bitgen): self.check_numpy_parity(dist_func, _bitgen, None, _size, None, adjusted_ulp_prec) dist_func = lambda x, p, size:x.geometric(p=p, size=size) self._check_invalid_types(dist_func, ['p', 'size'], [0.75, (1,)], ['x', ('x',)]) def test_zipf(self): # For this test dtype argument is never used, so we pass [None] as dtype # to make sure it runs only once with default system type. test_sizes = [None, (), (100,), (10, 20, 30)] bitgen_types = [None, MT19937] dist_func = lambda x, size, dtype:x.zipf(a=1.5, size=size) for _size in test_sizes: for _bitgen in bitgen_types: with self.subTest(_size=_size, _bitgen=_bitgen): self.check_numpy_parity(dist_func, _bitgen, None, _size, None) dist_func = lambda x, a, size:x.zipf(a=a, size=size) self._check_invalid_types(dist_func, ['a', 'size'], [1, (1,)], ['x', ('x',)]) def test_triangular(self): # For this test dtype argument is never used, so we pass [None] as dtype # to make sure it runs only once with default system type. test_sizes = [None, (), (100,), (10, 20, 30)] bitgen_types = [None, MT19937] dist_func = lambda x, size, dtype:\ x.triangular(left=0, mode=3, right=5, size=size) for _size in test_sizes: for _bitgen in bitgen_types: with self.subTest(_size=_size, _bitgen=_bitgen): self.check_numpy_parity(dist_func, _bitgen, None, _size, None) dist_func = lambda x, left, mode, right, size:\ x.triangular(left=left, mode=mode, right=right, size=size) self._check_invalid_types(dist_func, ['left', 'mode', 'right', 'size'], [0, 3, 5, (1,)], ['x', 'x', 'x', ('x',)]) def test_poisson(self): # For this test dtype argument is never used, so we pass [None] as dtype # to make sure it runs only once with default system type. test_sizes = [None, (), (100,), (10, 20, 30)] bitgen_types = [None, MT19937] dist_func = lambda x, size, dtype:x.poisson(lam=15, size=size) for _size in test_sizes: for _bitgen in bitgen_types: with self.subTest(_size=_size, _bitgen=_bitgen): self.check_numpy_parity(dist_func, _bitgen, None, _size, None, adjusted_ulp_prec) dist_func = lambda x, lam, size:x.poisson(lam=lam, size=size) self._check_invalid_types(dist_func, ['lam', 'size'], [15, (1,)], ['x', ('x',)]) def test_negative_binomial(self): # For this test dtype argument is never used, so we pass [None] as dtype # to make sure it runs only once with default system type. test_sizes = [None, (), (100,), (10, 20, 30)] bitgen_types = [None, MT19937] dist_func = lambda x, size, dtype:\ x.negative_binomial(n=1, p=0.1, size=size) for _size in test_sizes: for _bitgen in bitgen_types: with self.subTest(_size=_size, _bitgen=_bitgen): self.check_numpy_parity(dist_func, _bitgen, None, _size, None, adjusted_ulp_prec) dist_func = lambda x, n, p, size:\ x.negative_binomial(n=n, p=p, size=size) self._check_invalid_types(dist_func, ['n', 'p', 'size'], [1, 0.75, (1,)], ['x', 'x', ('x',)]) # NumPy tests at: # https://github.com/numpy/numpy/blob/95e3e7f445407e4f355b23d6a9991d8774f0eb0c/numpy/random/tests/test_generator_mt19937.py#L936 # Written in following format for semblance with existing Generator tests. def test_shuffle(self): test_sizes = [(10, 20, 30)] bitgen_types = [None, MT19937] axes = [0, 1, 2] for _size, _bitgen, _axis in itertools.product(test_sizes, bitgen_types, axes): with self.subTest(_size=_size, _bitgen=_bitgen, _axis=_axis): def dist_func(x, size, dtype): arr = x.random(size=size) x.shuffle(arr, axis=_axis) return arr self.check_numpy_parity(dist_func, _bitgen, None, _size, None, 0) def test_shuffle_empty(self): a = np.array([]) b = np.array([]) def dist_func(x, arr): x.shuffle(arr) return arr nb_func = numba.njit(dist_func) rng = lambda: np.random.default_rng(1) self.assertPreciseEqual(dist_func(rng(), a), nb_func(rng(), b)) def test_shuffle_check(self): self.disable_leak_check() def dist_func(x, arr, axis): x.shuffle(arr, axis=axis) return arr self._check_invalid_types(dist_func, ['x', 'axis'], [np.array([3,4,5]), 0], ['x', 'x']) rng = np.random.default_rng(1) with self.assertRaises(IndexError) as raises: numba.njit(dist_func)(rng, np.array([3,4,5]), 2) self.assertIn( 'Axis is out of bounds for the given array', str(raises.exception) ) # NumPy tests at: # https://github.com/numpy/numpy/blob/95e3e7f445407e4f355b23d6a9991d8774f0eb0c/numpy/random/tests/test_generator_mt19937.py#L1030 # Written in following format for semblance with existing Generator tests. def test_permutation(self): test_sizes = [(10, 20, 30)] bitgen_types = [None, MT19937] axes = [0, 1, 2, -1, -2] for _size, _bitgen, _axis in itertools.product(test_sizes, bitgen_types, axes): with self.subTest(_size=_size, _bitgen=_bitgen, _axis=_axis): def dist_func(x, size, dtype): arr = x.random(size=size) return x.permutation(arr, axis=1) self.check_numpy_parity(dist_func, _bitgen, None, _size, None, 0) # Test that permutation is actually done on a copy of the array dist_func = numba.njit(lambda rng, arr: rng.permutation(arr)) rng = np.random.default_rng() arr = rng.random(size=(10, 20)) arr_cpy = arr.copy() dist_func(rng, arr) self.assertPreciseEqual(arr, arr_cpy) def test_permutation_exception(self): self.disable_leak_check() def dist_func(x, arr, axis): return x.permutation(arr, axis=axis) self._check_invalid_types(dist_func, ['x', 'axis'], [np.array([3,4,5]), 0], ['x', 'x']) rng = np.random.default_rng(1) with self.assertRaises(IndexError) as raises: numba.njit(dist_func)(rng, np.array([3,4,5]), 2) self.assertIn( 'Axis is out of bounds for the given array', str(raises.exception) ) with self.assertRaises(IndexError) as raises: numba.njit(dist_func)(rng, np.array([3,4,5]), -2) self.assertIn( 'Axis is out of bounds for the given array', str(raises.exception) ) def test_permutation_empty(self): a = np.array([]) b = np.array([]) def dist_func(x, arr): return x.permutation(arr) nb_func = numba.njit(dist_func) rng = lambda: np.random.default_rng(1) self.assertPreciseEqual(dist_func(rng(), a), nb_func(rng(), b)) def test_noncentral_chisquare(self): # For this test dtype argument is never used, so we pass [None] as dtype # to make sure it runs only once with default system type. test_sizes = [None, (), (100,), (10, 20, 30)] bitgen_types = [None, MT19937] dist_func = lambda x, size, dtype:\ x.noncentral_chisquare(3.0, 20.0, size=size) for _size, _bitgen in itertools.product(test_sizes, bitgen_types): with self.subTest(_size=_size, _bitgen=_bitgen): self.check_numpy_parity(dist_func, _bitgen, None, _size, None) dist_func = lambda x, df, nonc, size:\ x.noncentral_chisquare(df=df, nonc=nonc, size=size) valid_args = [3.0, 5.0, (1,)] self._check_invalid_types(dist_func, ['df', 'nonc', 'size'], valid_args, ['x', 'x', ('x',)]) # Test argument bounds rng = np.random.default_rng() valid_args = [rng] + valid_args nb_dist_func = numba.njit(dist_func) with self.assertRaises(ValueError) as raises: curr_args = valid_args.copy() # Change df to an invalid value curr_args[1] = 0 nb_dist_func(*curr_args) self.assertIn('df <= 0', str(raises.exception)) with self.assertRaises(ValueError) as raises: curr_args = valid_args.copy() # Change nonc to an invalid value curr_args[2] = -1 nb_dist_func(*curr_args) self.assertIn('nonc < 0', str(raises.exception)) # Exceptions leak references self.disable_leak_check() def test_noncentral_f(self): # For this test dtype argument is never used, so we pass [None] as dtype # to make sure it runs only once with default system type. test_sizes = [None, (), (100,), (10, 20, 30)] bitgen_types = [None, MT19937] dist_func = lambda x, size, dtype:\ x.noncentral_f(3.0, 20.0, 3.0, size=size) for _size, _bitgen in itertools.product(test_sizes, bitgen_types): with self.subTest(_size=_size, _bitgen=_bitgen): self.check_numpy_parity(dist_func, _bitgen, None, _size, None, adjusted_ulp_prec) dist_func = lambda x, dfnum, dfden, nonc, size:\ x.noncentral_f(dfnum=dfnum, dfden=dfden, nonc=nonc, size=size) valid_args = [3.0, 5.0, 3.0, (1,)] self._check_invalid_types(dist_func, ['dfnum', 'dfden', 'nonc', 'size'], valid_args, ['x', 'x', 'x', ('x',)]) # Test argument bounds rng = np.random.default_rng() valid_args = [rng] + valid_args nb_dist_func = numba.njit(dist_func) with self.assertRaises(ValueError) as raises: curr_args = valid_args.copy() # Change dfnum to an invalid value curr_args[1] = 0 nb_dist_func(*curr_args) self.assertIn('dfnum <= 0', str(raises.exception)) with self.assertRaises(ValueError) as raises: curr_args = valid_args.copy() # Change dfden to an invalid value curr_args[2] = 0 nb_dist_func(*curr_args) self.assertIn('dfden <= 0', str(raises.exception)) with self.assertRaises(ValueError) as raises: curr_args = valid_args.copy() # Change nonc to an invalid value curr_args[3] = -1 nb_dist_func(*curr_args) self.assertIn('nonc < 0', str(raises.exception)) # Exceptions leak references self.disable_leak_check() def test_logseries(self): # For this test dtype argument is never used, so we pass [None] as dtype # to make sure it runs only once with default system type. test_sizes = [None, (), (100,), (10, 20, 30)] bitgen_types = [None, MT19937] dist_func = lambda x, size, dtype:\ x.logseries(0.3, size=size) for _size, _bitgen in itertools.product(test_sizes, bitgen_types): with self.subTest(_size=_size, _bitgen=_bitgen): self.check_numpy_parity(dist_func, _bitgen, None, _size, None) dist_func = lambda x, p, size:\ x.logseries(p=p, size=size) valid_args = [0.3, (1,)] self._check_invalid_types(dist_func, ['p', 'size'], valid_args, ['x', ('x',)]) # Test argument bounds rng = np.random.default_rng(1) valid_args = [rng] + valid_args nb_dist_func = numba.njit(dist_func) for _p in [-0.1, 1, np.nan]: with self.assertRaises(ValueError) as raises: curr_args = valid_args.copy() # Change p to an invalid negative, positive and nan value curr_args[1] = _p nb_dist_func(*curr_args) self.assertIn('p < 0, p >= 1 or p is NaN', str(raises.exception)) # Exceptions leak references self.disable_leak_check() def test_binomial(self): # For this test dtype argument is never used, so we pass [None] as dtype # to make sure it runs only once with default system type. test_sizes = [None, (), (100,), (10, 20, 30)] bitgen_types = [None, MT19937] dist_func = lambda x, size, dtype:\ x.binomial(n=1, p=0.1, size=size) for _size in test_sizes: for _bitgen in bitgen_types: with self.subTest(_size=_size, _bitgen=_bitgen): self.check_numpy_parity(dist_func, _bitgen, None, _size, None, adjusted_ulp_prec) dist_func = lambda x, n, p, size:\ x.binomial(n=n, p=p, size=size) self._check_invalid_types(dist_func, ['n', 'p', 'size'], [1, 0.75, (1,)], ['x', 'x', ('x',)]) def test_binomial_cases(self): cases = [ (1, 0.1), # p <= 0.5 && n * p <= 30 (50, 0.9), # p > 0.5 && n * p <= 30 (100, 0.4), # p <= 0.5 && n * p > 30 (100, 0.9) # p > 0.5 && n * p > 30 ] size = None for n, p in cases: with self.subTest(n=n, p=p): dist_func = lambda x, size, dtype:\ x.binomial(n, p, size=size) self.check_numpy_parity(dist_func, None, None, size, None, 0) class TestGeneratorCaching(TestCase, SerialMixin): def test_randomgen_caching(self): nb_rng = np.random.default_rng(1) np_rng = np.random.default_rng(1) numba_func = numba.njit(lambda x: x.random(10), cache=True) self.assertPreciseEqual(np_rng.random(10), numba_func(nb_rng)) # Run the function twice to make sure caching doesn't break anything. self.assertPreciseEqual(np_rng.random(10), numba_func(nb_rng)) # Check that the function can be retrieved successfully from the cache. res = run_in_new_process_caching(test_generator_caching) self.assertEqual(res['exitcode'], 0)