# File generated from our OpenAPI spec by Stainless. See CONTRIBUTING.md for details. from __future__ import annotations import base64 from typing import List, Union, Iterable, cast from typing_extensions import Literal import httpx from .. import _legacy_response from ..types import embedding_create_params from .._types import NOT_GIVEN, Body, Query, Headers, NotGiven from .._utils import is_given, maybe_transform from .._compat import cached_property from .._extras import numpy as np, has_numpy from .._resource import SyncAPIResource, AsyncAPIResource from .._response import to_streamed_response_wrapper, async_to_streamed_response_wrapper from .._base_client import ( make_request_options, ) from ..types.create_embedding_response import CreateEmbeddingResponse __all__ = ["Embeddings", "AsyncEmbeddings"] class Embeddings(SyncAPIResource): @cached_property def with_raw_response(self) -> EmbeddingsWithRawResponse: return EmbeddingsWithRawResponse(self) @cached_property def with_streaming_response(self) -> EmbeddingsWithStreamingResponse: return EmbeddingsWithStreamingResponse(self) def create( self, *, input: Union[str, List[str], Iterable[int], Iterable[Iterable[int]]], model: Union[str, Literal["text-embedding-ada-002", "text-embedding-3-small", "text-embedding-3-large"]], dimensions: int | NotGiven = NOT_GIVEN, encoding_format: Literal["float", "base64"] | NotGiven = NOT_GIVEN, user: str | NotGiven = NOT_GIVEN, # Use the following arguments if you need to pass additional parameters to the API that aren't available via kwargs. # The extra values given here take precedence over values defined on the client or passed to this method. extra_headers: Headers | None = None, extra_query: Query | None = None, extra_body: Body | None = None, timeout: float | httpx.Timeout | None | NotGiven = NOT_GIVEN, ) -> CreateEmbeddingResponse: """ Creates an embedding vector representing the input text. Args: input: Input text to embed, encoded as a string or array of tokens. To embed multiple inputs in a single request, pass an array of strings or array of token arrays. The input must not exceed the max input tokens for the model (8192 tokens for `text-embedding-ada-002`), cannot be an empty string, and any array must be 2048 dimensions or less. [Example Python code](https://cookbook.openai.com/examples/how_to_count_tokens_with_tiktoken) for counting tokens. model: ID of the model to use. You can use the [List models](https://platform.openai.com/docs/api-reference/models/list) API to see all of your available models, or see our [Model overview](https://platform.openai.com/docs/models/overview) for descriptions of them. dimensions: The number of dimensions the resulting output embeddings should have. Only supported in `text-embedding-3` and later models. encoding_format: The format to return the embeddings in. Can be either `float` or [`base64`](https://pypi.org/project/pybase64/). user: A unique identifier representing your end-user, which can help OpenAI to monitor and detect abuse. [Learn more](https://platform.openai.com/docs/guides/safety-best-practices/end-user-ids). extra_headers: Send extra headers extra_query: Add additional query parameters to the request extra_body: Add additional JSON properties to the request timeout: Override the client-level default timeout for this request, in seconds """ params = { "input": input, "model": model, "user": user, "dimensions": dimensions, "encoding_format": encoding_format, } if not is_given(encoding_format) and has_numpy(): params["encoding_format"] = "base64" def parser(obj: CreateEmbeddingResponse) -> CreateEmbeddingResponse: if is_given(encoding_format): # don't modify the response object if a user explicitly asked for a format return obj for embedding in obj.data: data = cast(object, embedding.embedding) if not isinstance(data, str): # numpy is not installed / base64 optimisation isn't enabled for this model yet continue embedding.embedding = np.frombuffer( # type: ignore[no-untyped-call] base64.b64decode(data), dtype="float32" ).tolist() return obj return self._post( "/embeddings", body=maybe_transform(params, embedding_create_params.EmbeddingCreateParams), options=make_request_options( extra_headers=extra_headers, extra_query=extra_query, extra_body=extra_body, timeout=timeout, post_parser=parser, ), cast_to=CreateEmbeddingResponse, ) class AsyncEmbeddings(AsyncAPIResource): @cached_property def with_raw_response(self) -> AsyncEmbeddingsWithRawResponse: return AsyncEmbeddingsWithRawResponse(self) @cached_property def with_streaming_response(self) -> AsyncEmbeddingsWithStreamingResponse: return AsyncEmbeddingsWithStreamingResponse(self) async def create( self, *, input: Union[str, List[str], Iterable[int], Iterable[Iterable[int]]], model: Union[str, Literal["text-embedding-ada-002", "text-embedding-3-small", "text-embedding-3-large"]], dimensions: int | NotGiven = NOT_GIVEN, encoding_format: Literal["float", "base64"] | NotGiven = NOT_GIVEN, user: str | NotGiven = NOT_GIVEN, # Use the following arguments if you need to pass additional parameters to the API that aren't available via kwargs. # The extra values given here take precedence over values defined on the client or passed to this method. extra_headers: Headers | None = None, extra_query: Query | None = None, extra_body: Body | None = None, timeout: float | httpx.Timeout | None | NotGiven = NOT_GIVEN, ) -> CreateEmbeddingResponse: """ Creates an embedding vector representing the input text. Args: input: Input text to embed, encoded as a string or array of tokens. To embed multiple inputs in a single request, pass an array of strings or array of token arrays. The input must not exceed the max input tokens for the model (8192 tokens for `text-embedding-ada-002`), cannot be an empty string, and any array must be 2048 dimensions or less. [Example Python code](https://cookbook.openai.com/examples/how_to_count_tokens_with_tiktoken) for counting tokens. model: ID of the model to use. You can use the [List models](https://platform.openai.com/docs/api-reference/models/list) API to see all of your available models, or see our [Model overview](https://platform.openai.com/docs/models/overview) for descriptions of them. dimensions: The number of dimensions the resulting output embeddings should have. Only supported in `text-embedding-3` and later models. encoding_format: The format to return the embeddings in. Can be either `float` or [`base64`](https://pypi.org/project/pybase64/). user: A unique identifier representing your end-user, which can help OpenAI to monitor and detect abuse. [Learn more](https://platform.openai.com/docs/guides/safety-best-practices/end-user-ids). extra_headers: Send extra headers extra_query: Add additional query parameters to the request extra_body: Add additional JSON properties to the request timeout: Override the client-level default timeout for this request, in seconds """ params = { "input": input, "model": model, "user": user, "dimensions": dimensions, "encoding_format": encoding_format, } if not is_given(encoding_format) and has_numpy(): params["encoding_format"] = "base64" def parser(obj: CreateEmbeddingResponse) -> CreateEmbeddingResponse: if is_given(encoding_format): # don't modify the response object if a user explicitly asked for a format return obj for embedding in obj.data: data = cast(object, embedding.embedding) if not isinstance(data, str): # numpy is not installed / base64 optimisation isn't enabled for this model yet continue embedding.embedding = np.frombuffer( # type: ignore[no-untyped-call] base64.b64decode(data), dtype="float32" ).tolist() return obj return await self._post( "/embeddings", body=maybe_transform(params, embedding_create_params.EmbeddingCreateParams), options=make_request_options( extra_headers=extra_headers, extra_query=extra_query, extra_body=extra_body, timeout=timeout, post_parser=parser, ), cast_to=CreateEmbeddingResponse, ) class EmbeddingsWithRawResponse: def __init__(self, embeddings: Embeddings) -> None: self._embeddings = embeddings self.create = _legacy_response.to_raw_response_wrapper( embeddings.create, ) class AsyncEmbeddingsWithRawResponse: def __init__(self, embeddings: AsyncEmbeddings) -> None: self._embeddings = embeddings self.create = _legacy_response.async_to_raw_response_wrapper( embeddings.create, ) class EmbeddingsWithStreamingResponse: def __init__(self, embeddings: Embeddings) -> None: self._embeddings = embeddings self.create = to_streamed_response_wrapper( embeddings.create, ) class AsyncEmbeddingsWithStreamingResponse: def __init__(self, embeddings: AsyncEmbeddings) -> None: self._embeddings = embeddings self.create = async_to_streamed_response_wrapper( embeddings.create, )