# Author: Leland McInnes # # License: BSD 2 clause import time import numba from numba.core import types import numba.experimental.structref as structref import numpy as np @numba.njit("void(i8[:], i8)", cache=True) def seed(rng_state, seed): """Seed the random number generator with a given seed.""" rng_state.fill(seed + 0xFFFF) @numba.njit("i4(i8[:])", cache=True) def tau_rand_int(state): """A fast (pseudo)-random number generator. Parameters ---------- state: array of int64, shape (3,) The internal state of the rng Returns ------- A (pseudo)-random int32 value """ state[0] = (((state[0] & 4294967294) << 12) & 0xFFFFFFFF) ^ ( (((state[0] << 13) & 0xFFFFFFFF) ^ state[0]) >> 19 ) state[1] = (((state[1] & 4294967288) << 4) & 0xFFFFFFFF) ^ ( (((state[1] << 2) & 0xFFFFFFFF) ^ state[1]) >> 25 ) state[2] = (((state[2] & 4294967280) << 17) & 0xFFFFFFFF) ^ ( (((state[2] << 3) & 0xFFFFFFFF) ^ state[2]) >> 11 ) return state[0] ^ state[1] ^ state[2] @numba.njit("f4(i8[:])", cache=True) def tau_rand(state): """A fast (pseudo)-random number generator for floats in the range [0,1] Parameters ---------- state: array of int64, shape (3,) The internal state of the rng Returns ------- A (pseudo)-random float32 in the interval [0, 1] """ integer = tau_rand_int(state) return abs(float(integer) / 0x7FFFFFFF) @numba.njit( [ "f4(f4[::1])", numba.types.float32( numba.types.Array(numba.types.float32, 1, "C", readonly=True) ), ], locals={ "dim": numba.types.intp, "i": numba.types.uint32, # "result": numba.types.float32, # This provides speed, but causes errors in corner cases }, fastmath=True, cache=True, ) def norm(vec): """Compute the (standard l2) norm of a vector. Parameters ---------- vec: array of shape (dim,) Returns ------- The l2 norm of vec. """ result = 0.0 dim = vec.shape[0] for i in range(dim): result += vec[i] * vec[i] return np.sqrt(result) @numba.njit(cache=True) def rejection_sample(n_samples, pool_size, rng_state): """Generate n_samples many integers from 0 to pool_size such that no integer is selected twice. The duplication constraint is achieved via rejection sampling. Parameters ---------- n_samples: int The number of random samples to select from the pool pool_size: int The size of the total pool of candidates to sample from rng_state: array of int64, shape (3,) Internal state of the random number generator Returns ------- sample: array of shape(n_samples,) The ``n_samples`` randomly selected elements from the pool. """ result = np.empty(n_samples, dtype=np.int64) for i in range(n_samples): reject_sample = True j = 0 while reject_sample: j = tau_rand_int(rng_state) % pool_size for k in range(i): if j == result[k]: break else: reject_sample = False result[i] = j return result @structref.register class HeapType(types.StructRef): pass class Heap(structref.StructRefProxy): @property def indices(self): return Heap_get_indices(self) @property def distances(self): return Heap_get_distances(self) @property def flags(self): return Heap_get_flags(self) @numba.njit(cache=True) def Heap_get_flags(self): return self.flags @numba.njit(cache=True) def Heap_get_distances(self): return self.distances @numba.njit(cache=True) def Heap_get_indices(self): return self.indices structref.define_proxy(Heap, HeapType, ["indices", "distances", "flags"]) # Heap = namedtuple("Heap", ("indices", "distances", "flags")) @numba.njit(cache=True) def make_heap(n_points, size): """Constructor for the numba enabled heap objects. The heaps are used for approximate nearest neighbor search, maintaining a list of potential neighbors sorted by their distance. We also flag if potential neighbors are newly added to the list or not. Internally this is stored as a single ndarray; the first axis determines whether we are looking at the array of candidate graph_indices, the array of distances, or the flag array for whether elements are new or not. Each of these arrays are of shape (``n_points``, ``size``) Parameters ---------- n_points: int The number of graph_data points to track in the heap. size: int The number of items to keep on the heap for each graph_data point. Returns ------- heap: An ndarray suitable for passing to other numba enabled heap functions. """ indices = np.full((int(n_points), int(size)), -1, dtype=np.int32) distances = np.full((int(n_points), int(size)), np.infty, dtype=np.float32) flags = np.zeros((int(n_points), int(size)), dtype=np.uint8) result = (indices, distances, flags) return result @numba.njit(cache=True) def siftdown(heap1, heap2, elt): """Restore the heap property for a heap with an out of place element at position ``elt``. This works with a heap pair where heap1 carries the weights and heap2 holds the corresponding elements.""" while elt * 2 + 1 < heap1.shape[0]: left_child = elt * 2 + 1 right_child = left_child + 1 swap = elt if heap1[swap] < heap1[left_child]: swap = left_child if right_child < heap1.shape[0] and heap1[swap] < heap1[right_child]: swap = right_child if swap == elt: break else: heap1[elt], heap1[swap] = heap1[swap], heap1[elt] heap2[elt], heap2[swap] = heap2[swap], heap2[elt] elt = swap @numba.njit(parallel=True, cache=False) def deheap_sort(indices, distances): """Given two arrays representing a heap (indices and distances), reorder the arrays by increasing distance. This is effectively just the second half of heap sort (the first half not being required since we already have the graph_data in a heap). Note that this is done in-place. Parameters ---------- indices : array of shape (n_samples, n_neighbors) The graph indices to sort by distance. distances : array of shape (n_samples, n_neighbors) The corresponding edge distance. Returns ------- indices, distances: arrays of shape (n_samples, n_neighbors) The indices and distances sorted by increasing distance. """ for i in numba.prange(indices.shape[0]): # starting from the end of the array and moving back for j in range(indices.shape[1] - 1, 0, -1): indices[i, 0], indices[i, j] = indices[i, j], indices[i, 0] distances[i, 0], distances[i, j] = distances[i, j], distances[i, 0] siftdown(distances[i, :j], indices[i, :j], 0) return indices, distances # @numba.njit() # def smallest_flagged(heap, row): # """Search the heap for the smallest element that is # still flagged. # # Parameters # ---------- # heap: array of shape (3, n_samples, n_neighbors) # The heaps to search # # row: int # Which of the heaps to search # # Returns # ------- # index: int # The index of the smallest flagged element # of the ``row``th heap, or -1 if no flagged # elements remain in the heap. # """ # ind = heap[0][row] # dist = heap[1][row] # flag = heap[2][row] # # min_dist = np.inf # result_index = -1 # # for i in range(ind.shape[0]): # if flag[i] == 1 and dist[i] < min_dist: # min_dist = dist[i] # result_index = i # # if result_index >= 0: # flag[result_index] = 0.0 # return int(ind[result_index]) # else: # return -1 @numba.njit(parallel=True, locals={"idx": numba.types.int64}, cache=False) def new_build_candidates(current_graph, max_candidates, rng_state, n_threads): """Build a heap of candidate neighbors for nearest neighbor descent. For each vertex the candidate neighbors are any current neighbors, and any vertices that have the vertex as one of their nearest neighbors. Parameters ---------- current_graph: heap The current state of the graph for nearest neighbor descent. max_candidates: int The maximum number of new candidate neighbors. rng_state: array of int64, shape (3,) The internal state of the rng Returns ------- candidate_neighbors: A heap with an array of (randomly sorted) candidate neighbors for each vertex in the graph. """ current_indices = current_graph[0] current_flags = current_graph[2] n_vertices = current_indices.shape[0] n_neighbors = current_indices.shape[1] new_candidate_indices = np.full((n_vertices, max_candidates), -1, dtype=np.int32) new_candidate_priority = np.full( (n_vertices, max_candidates), np.inf, dtype=np.float32 ) old_candidate_indices = np.full((n_vertices, max_candidates), -1, dtype=np.int32) old_candidate_priority = np.full( (n_vertices, max_candidates), np.inf, dtype=np.float32 ) for n in numba.prange(n_threads): local_rng_state = rng_state + n for i in range(n_vertices): for j in range(n_neighbors): idx = current_indices[i, j] isn = current_flags[i, j] if idx < 0: continue d = tau_rand(local_rng_state) if isn: if i % n_threads == n: checked_heap_push( new_candidate_priority[i], new_candidate_indices[i], d, idx ) if idx % n_threads == n: checked_heap_push( new_candidate_priority[idx], new_candidate_indices[idx], d, i, ) else: if i % n_threads == n: checked_heap_push( old_candidate_priority[i], old_candidate_indices[i], d, idx ) if idx % n_threads == n: checked_heap_push( old_candidate_priority[idx], old_candidate_indices[idx], d, i, ) indices = current_graph[0] flags = current_graph[2] for i in numba.prange(n_vertices): for j in range(n_neighbors): idx = indices[i, j] for k in range(max_candidates): if new_candidate_indices[i, k] == idx: flags[i, j] = 0 break return new_candidate_indices, old_candidate_indices @numba.njit("b1(u1[::1],i4)", cache=True) def has_been_visited(table, candidate): loc = candidate >> 3 mask = 1 << (candidate & 7) return table[loc] & mask @numba.njit("void(u1[::1],i4)", cache=True) def mark_visited(table, candidate): loc = candidate >> 3 mask = 1 << (candidate & 7) table[loc] |= mask return @numba.njit( "i4(f4[::1],i4[::1],f4,i4)", fastmath=True, locals={ "size": numba.types.intp, "i": numba.types.uint16, "ic1": numba.types.uint16, "ic2": numba.types.uint16, "i_swap": numba.types.uint16, }, cache=True, ) def simple_heap_push(priorities, indices, p, n): if p >= priorities[0]: return 0 size = priorities.shape[0] # insert val at position zero priorities[0] = p indices[0] = n # descend the heap, swapping values until the max heap criterion is met i = 0 while True: ic1 = 2 * i + 1 ic2 = ic1 + 1 if ic1 >= size: break elif ic2 >= size: if priorities[ic1] > p: i_swap = ic1 else: break elif priorities[ic1] >= priorities[ic2]: if p < priorities[ic1]: i_swap = ic1 else: break else: if p < priorities[ic2]: i_swap = ic2 else: break priorities[i] = priorities[i_swap] indices[i] = indices[i_swap] i = i_swap priorities[i] = p indices[i] = n return 1 @numba.njit( "i4(f4[::1],i4[::1],f4,i4)", fastmath=True, locals={ "size": numba.types.intp, "i": numba.types.uint16, "ic1": numba.types.uint16, "ic2": numba.types.uint16, "i_swap": numba.types.uint16, }, cache=True, ) def checked_heap_push(priorities, indices, p, n): if p >= priorities[0]: return 0 size = priorities.shape[0] # break if we already have this element. for i in range(size): if n == indices[i]: return 0 # insert val at position zero priorities[0] = p indices[0] = n # descend the heap, swapping values until the max heap criterion is met i = 0 while True: ic1 = 2 * i + 1 ic2 = ic1 + 1 if ic1 >= size: break elif ic2 >= size: if priorities[ic1] > p: i_swap = ic1 else: break elif priorities[ic1] >= priorities[ic2]: if p < priorities[ic1]: i_swap = ic1 else: break else: if p < priorities[ic2]: i_swap = ic2 else: break priorities[i] = priorities[i_swap] indices[i] = indices[i_swap] i = i_swap priorities[i] = p indices[i] = n return 1 @numba.njit( "i4(f4[::1],i4[::1],u1[::1],f4,i4,u1)", fastmath=True, locals={ "size": numba.types.intp, "i": numba.types.uint16, "ic1": numba.types.uint16, "ic2": numba.types.uint16, "i_swap": numba.types.uint16, }, cache=True, ) def checked_flagged_heap_push(priorities, indices, flags, p, n, f): if p >= priorities[0]: return 0 size = priorities.shape[0] # break if we already have this element. for i in range(size): if n == indices[i]: return 0 # insert val at position zero priorities[0] = p indices[0] = n flags[0] = f # descend the heap, swapping values until the max heap criterion is met i = 0 while True: ic1 = 2 * i + 1 ic2 = ic1 + 1 if ic1 >= size: break elif ic2 >= size: if priorities[ic1] > p: i_swap = ic1 else: break elif priorities[ic1] >= priorities[ic2]: if p < priorities[ic1]: i_swap = ic1 else: break else: if p < priorities[ic2]: i_swap = ic2 else: break priorities[i] = priorities[i_swap] indices[i] = indices[i_swap] flags[i] = flags[i_swap] i = i_swap priorities[i] = p indices[i] = n flags[i] = f return 1 @numba.njit( parallel=True, locals={ "p": numba.int32, "q": numba.int32, "d": numba.float32, "added": numba.uint8, "n": numba.uint32, "i": numba.uint32, "j": numba.uint32, }, cache=False, ) def apply_graph_updates_low_memory(current_graph, updates, n_threads): n_changes = 0 priorities = current_graph[1] indices = current_graph[0] flags = current_graph[2] # n_threads = numba.get_num_threads() for n in numba.prange(n_threads): for i in range(len(updates)): for j in range(len(updates[i])): p, q, d = updates[i][j] if p == -1 or q == -1: continue if p % n_threads == n: added = checked_flagged_heap_push( priorities[p], indices[p], flags[p], d, q, 1 ) n_changes += added if q % n_threads == n: added = checked_flagged_heap_push( priorities[q], indices[q], flags[q], d, p, 1 ) n_changes += added return n_changes @numba.njit(locals={"p": numba.types.int64, "q": numba.types.int64}, cache=True) def apply_graph_updates_high_memory(current_graph, updates, in_graph): n_changes = 0 for i in range(len(updates)): for j in range(len(updates[i])): p, q, d = updates[i][j] if p == -1 or q == -1: continue if q in in_graph[p] and p in in_graph[q]: continue elif q in in_graph[p]: pass else: added = checked_flagged_heap_push( current_graph[1][p], current_graph[0][p], current_graph[2][p], d, q, 1, ) if added > 0: in_graph[p].add(q) n_changes += added if p == q or p in in_graph[q]: pass else: added = checked_flagged_heap_push( current_graph[1][p], current_graph[0][p], current_graph[2][p], d, q, 1, ) if added > 0: in_graph[q].add(p) n_changes += added return n_changes @numba.njit(cache=False) def initalize_heap_from_graph_indices(heap, graph_indices, data, metric): for i in range(graph_indices.shape[0]): for idx in range(graph_indices.shape[1]): j = graph_indices[i, idx] if j >= 0: d = metric(data[i], data[j]) checked_flagged_heap_push(heap[1][i], heap[0][i], heap[2][i], d, j, 1) return heap @numba.njit(cache=True) def initalize_heap_from_graph_indices_and_distances( heap, graph_indices, graph_distances ): for i in range(graph_indices.shape[0]): for idx in range(graph_indices.shape[1]): j = graph_indices[i, idx] if j >= 0: d = graph_distances[i, idx] checked_flagged_heap_push(heap[1][i], heap[0][i], heap[2][i], d, j, 1) return heap @numba.njit(parallel=True, cache=False) def sparse_initalize_heap_from_graph_indices( heap, graph_indices, data_indptr, data_indices, data_vals, metric ): for i in numba.prange(graph_indices.shape[0]): for idx in range(graph_indices.shape[1]): j = graph_indices[i, idx] ind1 = data_indices[data_indptr[i] : data_indptr[i + 1]] data1 = data_vals[data_indptr[i] : data_indptr[i + 1]] ind2 = data_indices[data_indptr[j] : data_indptr[j + 1]] data2 = data_vals[data_indptr[j] : data_indptr[j + 1]] d = metric(ind1, data1, ind2, data2) checked_flagged_heap_push(heap[1][i], heap[0][i], heap[2][i], d, j, 1) return heap # Generates a timestamp for use in logging messages when verbose=True def ts(): return time.ctime(time.time())