import math import numpy as np from scipy import special from scipy.stats._qmc import primes_from_2_to def _primes(n): # Defined to facilitate comparison between translation and source # In Matlab, primes(10.5) -> first four primes, primes(11.5) -> first five return primes_from_2_to(math.ceil(n)) def _gaminv(a, b): # Defined to facilitate comparison between translation and source # Matlab's `gaminv` is like `special.gammaincinv` but args are reversed return special.gammaincinv(b, a) def _qsimvtv(m, nu, sigma, a, b, rng): """Estimates the multivariate t CDF using randomized QMC Parameters ---------- m : int The number of points nu : float Degrees of freedom sigma : ndarray A 2D positive semidefinite covariance matrix a : ndarray Lower integration limits b : ndarray Upper integration limits. rng : Generator Pseudorandom number generator Returns ------- p : float The estimated CDF. e : float An absolute error estimate. """ # _qsimvtv is a Python translation of the Matlab function qsimvtv, # semicolons and all. # # This function uses an algorithm given in the paper # "Comparison of Methods for the Numerical Computation of # Multivariate t Probabilities", in # J. of Computational and Graphical Stat., 11(2002), pp. 950-971, by # Alan Genz and Frank Bretz # # The primary references for the numerical integration are # "On a Number-Theoretical Integration Method" # H. Niederreiter, Aequationes Mathematicae, 8(1972), pp. 304-11. # and # "Randomization of Number Theoretic Methods for Multiple Integration" # R. Cranley & T.N.L. Patterson, SIAM J Numer Anal, 13(1976), pp. 904-14. # # Alan Genz is the author of this function and following Matlab functions. # Alan Genz, WSU Math, PO Box 643113, Pullman, WA 99164-3113 # Email : alangenz@wsu.edu # # Copyright (C) 2013, Alan Genz, All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided the following conditions are met: # 1. Redistributions of source code must retain the above copyright # notice, this list of conditions and the following disclaimer. # 2. Redistributions in binary form must reproduce the above copyright # notice, this list of conditions and the following disclaimer in # the documentation and/or other materials provided with the # distribution. # 3. The contributor name(s) may not be used to endorse or promote # products derived from this software without specific prior # written permission. # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS # "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT # LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS # FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE # COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, # INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, # BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS # OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND # ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR # TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. # Initialization sn = max(1, math.sqrt(nu)); ch, az, bz = _chlrps(sigma, a/sn, b/sn) n = len(sigma); N = 10; P = math.ceil(m/N); on = np.ones(P); p = 0; e = 0 ps = np.sqrt(_primes(5*n*math.log(n+4)/4)); q = ps[:, np.newaxis] # Richtmyer gens. # Randomization loop for ns samples c = None; dc = None for S in range(N): vp = on.copy(); s = np.zeros((n, P)) for i in range(n): x = np.abs(2*np.mod(q[i]*np.arange(1, P+1) + rng.random(), 1)-1) # periodizing transform if i == 0: r = on if nu > 0: r = np.sqrt(2*_gaminv(x, nu/2)) else: y = _Phinv(c + x*dc) s[i:] += ch[i:, i-1:i] * y si = s[i, :]; c = on.copy(); ai = az[i]*r - si; d = on.copy(); bi = bz[i]*r - si c[ai <= -9] = 0; tl = abs(ai) < 9; c[tl] = _Phi(ai[tl]) d[bi <= -9] = 0; tl = abs(bi) < 9; d[tl] = _Phi(bi[tl]) dc = d - c; vp = vp * dc d = (np.mean(vp) - p)/(S + 1); p = p + d; e = (S - 1)*e/(S + 1) + d**2 e = math.sqrt(e) # error estimate is 3 times std error with N samples. return p, e # Standard statistical normal distribution functions def _Phi(z): return special.ndtr(z) def _Phinv(p): return special.ndtri(p) def _chlrps(R, a, b): """ Computes permuted and scaled lower Cholesky factor c for R which may be singular, also permuting and scaling integration limit vectors a and b. """ ep = 1e-10 # singularity tolerance eps = np.finfo(R.dtype).eps n = len(R); c = R.copy(); ap = a.copy(); bp = b.copy(); d = np.sqrt(np.maximum(np.diag(c), 0)) for i in range(n): if d[i] > 0: c[:, i] /= d[i]; c[i, :] /= d[i] ap[i] /= d[i]; bp[i] /= d[i] y = np.zeros((n, 1)); sqtp = math.sqrt(2*math.pi) for k in range(n): im = k; ckk = 0; dem = 1; s = 0 for i in range(k, n): if c[i, i] > eps: cii = math.sqrt(max(c[i, i], 0)) if i > 0: s = c[i, :k] @ y[:k] ai = (ap[i]-s)/cii; bi = (bp[i]-s)/cii; de = _Phi(bi)-_Phi(ai) if de <= dem: ckk = cii; dem = de; am = ai; bm = bi; im = i if im > k: ap[[im, k]] = ap[[k, im]]; bp[[im, k]] = bp[[k, im]]; c[im, im] = c[k, k] t = c[im, :k].copy(); c[im, :k] = c[k, :k]; c[k, :k] = t t = c[im+1:, im].copy(); c[im+1:, im] = c[im+1:, k]; c[im+1:, k] = t t = c[k+1:im, k].copy(); c[k+1:im, k] = c[im, k+1:im].T; c[im, k+1:im] = t.T if ckk > ep*(k+1): c[k, k] = ckk; c[k, k+1:] = 0 for i in range(k+1, n): c[i, k] = c[i, k]/ckk; c[i, k+1:i+1] = c[i, k+1:i+1] - c[i, k]*c[k+1:i+1, k].T if abs(dem) > ep: y[k] = (np.exp(-am**2/2) - np.exp(-bm**2/2)) / (sqtp*dem) else: y[k] = (am + bm) / 2 if am < -10: y[k] = bm elif bm > 10: y[k] = am c[k, :k+1] /= ckk; ap[k] /= ckk; bp[k] /= ckk else: c[k:, k] = 0; y[k] = (ap[k] + bp[k])/2 pass return c, ap, bp