import pytest import numpy as np from numpy.testing import assert_allclose from scipy.stats import _boost type_char_to_type_tol = {'f': (np.float32, 32*np.finfo(np.float32).eps), 'd': (np.float64, 32*np.finfo(np.float64).eps)} # Each item in this list is # (func, args, expected_value) # All the values can be represented exactly, even with np.float32. # # This is not an exhaustive test data set of all the functions! # It is a spot check of several functions, primarily for # checking that the different data types are handled correctly. test_data = [ (_boost._beta_cdf, (0.5, 2, 3), 0.6875), (_boost._beta_ppf, (0.6875, 2, 3), 0.5), (_boost._beta_pdf, (0.5, 2, 3), 1.5), (_boost._beta_pdf, (0, 1, 5), 5.0), (_boost._beta_pdf, (1, 5, 1), 5.0), (_boost._beta_sf, (0.5, 2, 1), 0.75), (_boost._beta_isf, (0.75, 2, 1), 0.5), (_boost._binom_cdf, (1, 3, 0.5), 0.5), (_boost._binom_pdf, (1, 4, 0.5), 0.25), (_boost._hypergeom_cdf, (2, 3, 5, 6), 0.5), (_boost._nbinom_cdf, (1, 4, 0.25), 0.015625), (_boost._ncf_mean, (10, 12, 2.5), 1.5), ] @pytest.mark.parametrize('func, args, expected', test_data) def test_stats_boost_ufunc(func, args, expected): type_sigs = func.types type_chars = [sig.split('->')[-1] for sig in type_sigs] for type_char in type_chars: typ, rtol = type_char_to_type_tol[type_char] args = [typ(arg) for arg in args] # Harmless overflow warnings are a "feature" of some wrappers on some # platforms. This test is about dtype and accuracy, so let's avoid false # test failures cause by these warnings. See gh-17432. with np.errstate(over='ignore'): value = func(*args) assert isinstance(value, typ) assert_allclose(value, expected, rtol=rtol)